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Preface

This volume contains the Proceedings of ICFCA 2007, the Fifth International
Conference on Formal Concept Analysis. The ICFCA conference series intends
to serve as a distinguished forum for state-of-the-art research from foundational
to applied lattice theory and related fields, all of which involve methods and
techniques in the realm of FCA. We believe this year’s conference provided a
continuation of the high standard of its predecessors.

Formal concept analysis ranges from restructuring general algebra and lattice
theory, on the one hand, to providing high-level conceptual analysis and knowl-
edge processing techniques in various applied disciplines, on the other hand. This
is due to the fact that FCA allows transforming relational data into implications
and dependencies and, vice versa, exploring plausible hypotheses, suggested im-
plications, or expected dependencies against data. This all is connected with the
investigation of hierarchical aspects of information—based on a mathematical
formalization of conceptual hierarchy. The field of FCA has been developing way
beyond its original scope and attracts a still-growing number of sophisticated re-
search scholars, who vary from theoreticians to more practical problem solvers.
This volume reflects the diversity between fundamental methods and applied
techniques, explored by an enthusiastic research community. Here, we only men-
tion research areas such as data visualization, information retrieval, machine
learning, data analysis and knowledge management.

ICFCA 2007 covered practical data analysis and problem solving as well as
foundational progress of the field. The algorithmic side was in balance with
theoretical discoveries. All regular papers in this volume were refereed by inde-
pendent domain experts, although the Program Chairs are responsible for the
final decision on publications in this volume. To assure a high-quality standard,
the close involvement of the Program Committee and the Editorial Board in any
decision making was crucial.

The General Conference Chair of ICFCA 2007, held in Clermont-Ferrand,
France, was Lhouari Nourine. The success of the conference was a result of all
involved, in particular, the General Conference Chair together with the Con-
ference Organizing Committee, and the Editorial Board in adjunction with the
Program Committee—to all of whom we express our warmest thanks. The ac-
tivity of the first Program Co-chair in preparing the volume was supported by
the DFG project “Concepts and Models” (COMO).

February 2007 Sergei O. Kuznetsov
Stefan E. Schmidt
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Canada
Sergei O. Kuznetsov Higher School of Economics, Moscow, Russia
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Relational Galois Connections

Bernhard Ganter

Institut für Algebra
Technische Universität Dresden

Abstract. Galois connections can be defined for lattices and for ordered
sets. We discuss a rather wide generalisation, which was introduced by
Weiqun Xia and has been reinvented under different names: Relational
Galois connections between relations. It turns out that the generalised
notion is of importance for the original one and can be utilised, e.g., for
computing Galois connections.

The present paper may be understood as an attempt to bring together
ideas of Wille [15], Xia [16], Domenach and Leclerc [3], and others and
to suggest a unifying language.

1 Galois Connections Between Relations

It is usual to define a Galois connection between two complete lattices (L1,≤1)
and (L2,≤2) as a pair (ϕ, ψ) of mappings

ϕ : L1 → L2, ψ : L2 → L1

satisfying for all x ∈ L1 and all y ∈ L2

x ≤1 ψ(y) ⇐⇒ y ≤2 ϕ(x).

It is well known that if this condition is satisfied, both mappings ϕ and ψ are
order reversing and that their compositions ϕ◦ψ and ψ ◦ϕ are closure operators
on L2 and L1, respectively, with dually isomorphic lattices of closed sets (see,
e.g., [4]).

Not so obvious is how to construct Galois connections for given lattices (L1,≤1)
and (L2,≤2). We shall address this question later. For the case that both lattices
are power set lattices, the answer was given by Birkhoff [2]: Let G and M be sets,
let I ⊆ G×M be some relation. Define

AI := {m ∈M | g I m for all g ∈ A} if A ⊆ G

and
BI := {g ∈ G | g I m for all m ∈ B} if B ⊆M.

Then

ϕ(X) := XI for X ⊆ G and ψ(Y ) := Y I for Y ⊆M

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 B. Ganter

defines a Galois connection between the power set lattice of G and the power
set lattice of M . The set

B(G, M, I) := {(A, B) | A ⊆ G, B ⊆M, AI = B, A = BI},
ordered by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 ⇐⇒ B2 ⊆ B1

is a complete lattice, called the concept lattice1. The sets of the form AI ,
A ⊆ G, are called the intents of (G, M, I), and those of the form BI , B ⊆ M
are the extents. These are the closed sets of the two closure operators.

The notion of a Galois connection can be generalised to ordered sets and, even
further, to arbitrary binary relations I ⊆ G ×M , J ⊆ H × N , as in the next
definition:

Definition 1. A Galois connection2 between (G, M, I) and (H, N, J) is a pair
(ϕ, ψ) of mappings

ϕ : G→ N, ψ : H →M

satisfying
g I ψ(h) ⇐⇒ h J ϕ(g).

This definition is symmetric: if (ϕ, ψ) is a Galois connection between (G, M, I)
and (H, N, J), then (ψ, ϕ) is a Galois connection between (H, N, J) and (G, M, I).
This corresponds to the original, contravariant definition of Galois connections.
Some authors consider also the covariant version, which allows for composition of
Galois connections. This is achieved when (H, N, J) is replaced by the dual con-
text (N, H, J−1). These mappings are closely related to infomorphisms and to Chu
morphisms, see Section 6 for more.

One might argue that this definition deviates from the original one for lattices
or ordered sets. But it is only a natural generalisation. For two ordered sets
(P,≤1) and (Q,≤2) the condition that (ϕ, ψ) is a Galois connection between
(P, P,≤1) and (Q, Q,≤2) is

x ≤1 ψ(y) ⇐⇒ y ≤2 ϕ(x),

as usual.
We may generalise even further, replacing the pair of mappings by a pair of

relations Φ ⊆ G×N and Ψ ⊆ H ×M . The natural condition then is that

g I hΨ ⇐⇒ h J gΦ

holds for all g ∈ G and all h ∈ H. We call this the (relational) Galois condition.
However, this condition by itself turns out to be not strong enough. We therefore
define
1 Our notation is that of Formal Concept Analysis [5], where (G,M, I) is called a

formal context. Other authors use names like classification [1], Chu-space [11],
etc.

2 Called context–Galois connection by Xia [16].
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Definition 2. A relational Galois connection3 between (G, M, I) and
(H, N, J) is a pair (Φ, Ψ) of relations

Φ ⊆ G×N and Ψ ⊆ H ×M

satisfying

1. g I hΨ ⇐⇒ h J gΦ for all g ∈ G, h ∈ H (the Galois condition),
2. Φ is the largest relation satisfying the Galois condition for the given Ψ , and

conversely.

H Ψ J

G I Φ

M N

Fig. 1. The Galois condition requires that the left hand part hΨ of a row from the
lower part is contained in a row gI of the upper part iff the right hand side gΦ of the
latter is contained in the former, in hJ

Proposition 1. The second condition of Definition 2 can be reformulated as
follows:

2’. gΦ is an intent of (H, N, J) and hΨ is an intent of (G, M, I).

Proof. Fix Ψ ⊆ H ×M . A relation Φ satisfies the direction “⇒” of the Galois
condition iff

gΦ ⊆ {h ∈ H | g I hΨ}J .

The implication “⇐” is equivalent to

gΦJ ⊆ {h ∈ H | g I hΨ},

which implies
gΦ ⊆ {h ∈ H | g I hΨ}J = gΦJJ .

Thus from Φ we obtain another relation satisfying the Galois condition for Ψ by
replacing each gΦ by its closure gΦJJ . This then is the largest possible choice.
The dual argument works for Ψ . 	

The next proposition shows that this is in fact a further generalisation.

3 Called essential Galois bond by Xia [16]. Xia’s condition (iii) is implied.
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Proposition 2. If (ϕ, ψ) is a Galois connection between (G, M, I) and (H, N, J)
then (Φ, Ψ), given by

gΦ := ϕ(g)JJ for g ∈ G, hΨ := ψ(h)II for h ∈ H,

is a relational Galois connection.

The proof of Proposition 1 shows that we get the second condition essentially
“for free”:

Proposition 3. Whenever R ⊆ G×N and S ⊆ H ×M are relations with

g I hS ⇐⇒ h J gR

then there is a unique relational Galois connection (Φ, Ψ) such that

g I hS ⇐⇒ g I hΨ ⇐⇒ h J gΦ ⇐⇒ h J gR.

Proof. Define Φ and Ψ as follows: for g ∈ G let gΦ := (gR)JJ , and for h ∈ H let
hΨ := (hS)II . 	

The next observation shows that our “radical” generalisation of Galois connec-
tions leads back to the original definition:

Lemma 1. If (φ, ψ) is a Galois connection between concepts lattices B(G, M, I)
and B(H, N, J), then

gΦ = Y :⇐⇒ φ(gII , gI) = (Y J , Y )

and
hΨ = X :⇐⇒ ψ(hJJ , hJ ) = (XI , X)

defines a relational Galois connection between (G, M, I) and (H, N, J).
Conversely we obtain from each relational Galois connection (Φ, Ψ) between

(G, M, I) and (H, N, J) a Galois connection (φ, ψ) between the concept lattices
B(G, M, I) and B(H, N, J) by

φ(X, XI) := (XΦJ , XΦ) and ψ(Y, Y J) := (Y ΨI , XΨ ).

The two constructions are inverse to each other.

Proof. The proof is straightforward. 	

The following proposition is no surprise:

Proposition 4. In a relational Galois connection, the two parts determine each
other. More precisely, if (Φ1, Ψ) and (Φ2, Ψ) are relational Galois connections
between (G, M, I) and (H, N, J), then Φ1 = Φ2, and dually.

Proof. For each g ∈ G, we have

(gΦ1)J = {h ∈ H | g I hΨ} = (gΦ2)J

and therefore gΦ1 = gΦ2. 	
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2 G-Relations and Dual Bonds

We have seen in Proposition 4 that it suffices to study only one of the two parts
of a relational Galois connection. So let us call Φ ⊆ G × N a G-relation from
(G, M, I) to (H, N, J) if there is some Ψ such that (Φ, Ψ) is a relational Galois
connection (this term was coined by Xia [16] following Shmuely’s notion of a
G-ideal [12,13]). A G-relation is, loosely spoken, one half of a relational Galois
connection.

Proposition 5. A relation Φ ⊆ G×N is a G-relation from (G, M, I) to (H, N, J)
if and only if it satisfies

1. for each g ∈ G, gΦ is an intent of (H, N, J),
2. for each h ∈ H, {g ∈ G | h J gΦ} is an extent of (G, M, I).

Proof. If (Φ, Ψ) is a relational Galois connection then the two conditions obvi-
ously have to be satisfied. Conversely, assume 1.) and 2.) and define Ψ by

hΨ := {g ∈ G | h J gΦ}I .
Clearly this is an intent and we have

g I hΨ ⇐⇒ g ∈ (hΨ )I

⇐⇒ g ∈ {x ∈ G | h J xΦ}II

⇐⇒ g ∈ {x ∈ G | h J xΦ}
⇐⇒ h J gΦ. 	


Note that the set of relation pairs satisfying the Galois condition is closed under
(arbitrary) unions:

g I hΨ1 ⇐⇒ h J gΦ1 and g I hΨ2 ⇐⇒ h J gΦ2

together imply
g I hΨ1∪Ψ2 ⇐⇒ h J gΦ1∪Φ2 .

Therefore, the relations Φ ⊆ G×N for which there is some Ψ ⊆ H×M satisfying
the Galois condition, ordered by inclusion, form a complete lattice. Moreover,
Proposition 3 guarantees that for each such relation there is a smallest G-relation
containing it (its G-closure4). As a consequence, we obtain

Theorem 1 (Xia [16]). The G-relations from (G, M, I) to (H, N, J), ordered
by set inclusion, form a complete lattice. The supremum of G-relations is the
G-closure of their union.

This lattice is isomorphic to the complete lattice of Galois connections between
the corresponding concept lattices B(G, M, I) and B(H, N, J).

An example is given in Figure 4.
Another encoding of a relational Galois connection in only one relation is

analogous to Birkhoff’s construction:
4 Note, however, that G-relations are not necessarily closed under intersections.
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Definition 3. A dual bond5 from (G, M, I) to (H, N, J) is a relation R ⊆
G×H for which it holds that

– for every g ∈ G, gR is an extent of (H, N, J) and
– for every h ∈ H, hR is an extent of (G, M, I).

Theorem 2. From each relational Galois connection (Φ, Ψ) between (G, M, I)
and (H, N, J) we obtain a dual bond R ⊆ G×H by means of

g R h :⇐⇒ g I hΨ (⇐⇒ h J gΦ).

Conversely, if R is a dual bond between (G, M, I) and (H, N, J), then

gΦ := gRJ for g ∈ G,

hΨ := hRI for h ∈ H

defines a relational Galois connection. The two constructions are inverse to each
other6.

Proof. If R is defined as above from a relational Galois connection (Φ, Ψ) we get

gR = gΦJ and hR = hΨI for g ∈ G, h ∈ H.

Then obviously R is a dual bond. Conversely, if R is a dual bond, then gR = gRJJ

and thus
h J gΦ ⇐⇒ h ∈ gΦJ = gRJJ = gR ⇐⇒ g R h,

and analogously g I hΨ ⇐⇒ g R h. This shows that (Φ, Ψ) is a relational Galois
connection. 	

As a corollary, we obtain a generalised version of Birkhoff’s construction:

Corollary 1 ([5], Theorem 53). For every dual bond R ⊆ G×H,

φ(X, XI) := (XR, XRJ), ψ(Y, Y J) := (Y R, Y RI)

defines a Galois connection between B(G, M, I) and B(H, N, J). Conversely, for
every Galois connection (φ, ψ),

R := {(g, h) | (gII , gI) ≤ ψ(hJJ , hJ)} = {(g, h) | (hJJ , hJ) ≤ φ(gII , gI)}

is a dual bond. The two constructions are inverse to each other.

Theorem 2 has several nice consequences. First of all, it shows that relational
Galois connections lead to closure operators:

5 Called biclosed relation by Domenach and Leclerc [3].
6 And induce a dual isomorphism between the lattice of all relational Galois connec-

tions and the lattice of all dual bonds.
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Proposition 6. If (Φ, Ψ) is a relational Galois connection between (G, M, I)
and (H, N, J), and if R is the corresponding dual bond, then the mappings

A �→ ARR for A ⊆ G

C �→ CRR for C ⊆ H

are closure operators with dually isomorphic closure systems.

Note that the closed sets of these closure operators are just the extents of the
images of the two mappings ϕ and ψ in Lemma 1.

Secondly, Theorem 2 shows us a simple way to construct the lattice of all
(relational) Galois connections. This comes from the fact that the dual bonds
form a closure system with a simple closure operator:

Proposition 7. A relation R ⊆ G×H is a dual bond from (G, M, I) to (H, N, J)
if and only if

A× {h} ⊆ R⇒ AII × {h} ⊆ R and {g} ×B ⊆ R⇒ {g} ×BJJ ⊆ R.

Proof. This is immediate from Definition 3. 	


Proposition 7 explains how to find for a given relation S ⊆ G×H the smallest
dual bond R containing S: We have to form the closure of S with respect to the
conditions of the proposition. This was elaborated by Domenach and Leclerc [3].

3 Simultaneous Implications

The possibility to describe Galois connections via dual bonds shows that there
is yet another possible view. To define a dual bond, it is not necessary to know
the two formal contexts (G, M, I) and (H, N, J), it suffices to know the induced
closure operators X �→ XII and Y �→ Y JJ . The condition on a relation R for
being a dual bond the is that for each g ∈ G the set gR must be closed with
respect to the closure operator Y �→ Y JJ , and dually for each h ∈ H the set hR

must be closed under X �→ XII .
This can be generalised. An important theme in Formal Concept Analysis is

that of attribute implications, i.e., expressions of the form A→ B, where A and
B are subsets of the attribute set M . It is easy to see that from each family F
of such implications one obtains a closure operator on M . It associates to each
subset X of M the smallest set containing X that is closed under all implications
from F . When a formal context is to be constructed in which these implications
hold, it is necessary and sufficient that all objects intents are closed under this
closure operator.

Dually we can infer conditions on the attribute intents when given object im-
plications have to be respected. The considerations that we have made above now
allow to characterise formal contexts compatible with given attribute
implications and object implications simultaneously.
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Consider the following setting: Let G and M be sets, let F1 be a set of implica-
tions on G and let F2 be a set of implications on M . Which relations I ⊆ G×M
have the property that in the formal context (G, M, I) all implications from F1

are valid object implications and all implications from F2 are valid attribute
implications?

Each of the two implication sets induces a closure operator that associates to
every subset its implicational closure. Let us denote these operators by A �→ A

�

and B �→ B
�

, respectively. Then the problem translates to the following: Find
those relations I ⊆ G×M that satisfy

– for each A ⊆ G, A
� ⊆ AII , and

– for each B ⊆M , B
� ⊆ BII .

If A is closed then this implies A ⊆ A
� ⊆ AII = A, i.e., A = A

�. The condition
therefore is equivalent to

– Every extent of (G, M, I) must be closed under A �→ A
� and

– every intent must be closed under B �→ B
�

.

In other words:

Proposition 8. The formal contexts (G, M, I) compatible with given implica-
tion sets on G and on M are precisely those for which I is a dual bond between
the closure operators generated by these implications.

4 Computing Galois Connections

Dual bonds are closed under intersection and thus form a closure system. The
most elegant way of describing the family of all dual bonds between two given
contexts would be to find a formal context whose extents are precisely the dual
bonds. There is a natural candidate:

Definition 4. The direct product of formal contexts (G, M, I) and (H, N, J) is
the context

(G×H, M ×N,∇),

given by
(g, h)∇(m, n) :⇐⇒ (gIm or hJn).

Proposition 9. All extents of the direct product are dual bonds.

Proof. It suffices to prove this for attribute extents. We have

(m, n)∇ = mI ×H ∪G× nI .

Abbreviating R := (m, n)∇, we find that R ⊆ G×H is a relation such that
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– gR = H or gR = nJ if g ∈ G and
– hR = G or hR = mI if h ∈ H .

In any case the result is an extent of (H, N, J) or of (G, M, I), respectively. 	

The concept lattice of a direct product is the tensor product of the concept lat-
tices, and experience shows that the tensor product tends to be rather large
compared to its factors. We may therefore expect that there are usually many
(relational) Galois connections between two formal contexts, respectively be-
tween their concept lattices. The converse of Proposition 9 does not always
hold: there are dual bonds that are not extents of the direct product. An exam-
ple is given in Figure 3, which displays the dual bonds from the formal context
N3 := ({1, 2, 3}, {1, 2, 3}, =) to itself (see Figure 2). So we consider the example

(G, M, I) := N3 =: (H, N, J).

We find 50 dual bonds, but the tensor product has only 44 elements, see Figure 3.
In fact, the equality relation is an example of a dual bond which is not an extent
of the direct product.

It seems somewhat mysterious that “most” of the dual bonds are extents of
the direct product, but some are not. This has been studied by Krötzsch, Hitzler,
and Zhang [7] and by Krötzsch and Malik [8].

1 2 3

1 ×
2 ×
3 ×

Fig. 2. The formal context N3 and its concept lattice M3

Corollary 2. The tensor product is dually isomorphic to a complete supremum-
subsemilattice of the lattice of all Galois connections.

We do not know of a natural context construction for the closure system of all
dual bonds. Nevertheless it is easy to compute all dual bonds between two given
(finite) formal contexts (and thereby all relational Galois connections, and all
Galois connections between the corresponding concept lattices as well): From
Proposition 7 we know what the closure operator for the closure system of dual
bonds is, and there are simple and fast algorithms for generating all closed sets
of a given closure operator (see [5]).

5 Bonds

A bond from (G, M, I) to (H, N, J) is a dual bond from (G, M, I) to (N, H, J−1).
Definition 3 thus gives:
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×

×
×
×

×
×

×××

×××
×
× ×

×
×

×××
×××
×××

π

Fig. 3. The 50 dual bonds from N3 to N3. This orbifold diagram is folded “modulo
automorphisms”: Only one representative is given for each isomorphism class. The
label π represents a permutation that is needed to make the labelling correct, see [17]
for details. The six dual bonds represented by the shaded vertex are not extents of the
direct product of the contexts.

Definition 5. A bond from (G, M, I) to
(H, N, J) is a relation R ⊆ G × N for which it
holds that

– for every g ∈ G, gR is an intent of (H, N, J)
and

– for every n ∈ N , nR is an extent of (G, M, I).
H J

G I R

M N

Bonds were introduced by R. Wille [14] to describe subdirect products of concept
lattices, see [5] for an introduction. Subdirect products are certain complete
sublattices of the direct product, and since direct products correspond to context
sums and complete sublattices to closed relations, the following is natural:

Proposition 10. R ⊆ G × N is a bond from
(G, M, I) to (H, N, J) if and only if

I ∪R ∪ J ∪ (H ×M)

is a closed relation of the context sum

(G, M, I) + (H, N, J)

(assuming G ∩H = ∅ = M ∩N).

H J

G I R

M N
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×
×

×
×
×

×
×

××××××
×××

×
×××
×××

×
×

×

×××
×××
×××

π

Fig. 4. The 50 Galois connections from M3 to M3 form a lattice which is isomorphic
to the lattice of all G-relations from N3 to N3, and dually isomorphic to the lattice in
Figure 3. As in Figure 3 the diagram is an orbifold diagram.

Proof. The concepts of the sum are precisely the pairs of the form

(A1 ∪A2, B1 ∪B2),

where (A1, B1) ∈ B(G, M, I) and (A1, B2) ∈ B(H, N, J). Now let (U, V ) be a
concept of (G, N, R). Then (U ∪ V J , V ∪ UJ) is a concept of

(G ∪H, M ∪N, I ∪R ∪ J ∪ (H ×M)).

In order for this to be a concept of the sum, it is necessary that U is an extent
of (G, M, I) and that V is an intent of (H, N, J). In other words, R must be a
bond.

But conversely, if R is a bond, and if (A, B) is a concept of

(G ∪H, M ∪N, I ∪R ∪ J ∪ (H ×M)),

then let U := A ∩G and V := B ∩N . Since

U = (B ∩M)I ∩ V R,

U must be an extent of (G, M, I) and B ∩M = U I . Dually we get that V is
an intent of (H, N, J) and V J = A ∩ H . Thus (A, B) is a concept of the sum
(G, M, I) + (H, N, J). 	
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According to the proposition, the bonds correspond to certain sublattices of the
direct product, and it can be said to which ones. Let us denote the smallest
element of B(G, M, I) by

01 := (M I , M),

the largest element of B(H, N, J) by

12 := (H, HJ ),

and similarly 02 := (NJ , N), 11 := (G, GI). Then the pair (01,12) of the direct
product corresponds to the concept

(H ∪M I , M ∪HJ)

of the sum context and roughly to the lower left quarter in the graphics shown
with Proposition 10. This element is contained in the complete sublattice B(K)
of the direct product, which was obtained from the bond R in Proposition 10.
According to Proposition 82 of [5], this sublattice is actually a subdirect product.
This leads to the following theorem, which I learnt from Kaarli, Kuchmei and
Schmidt [6], who generously attribute it to Shmuely [12], although it is not stated
there explicitly.

Theorem 3 ([6]). The complete sublattices of the direct product

B(G, M, I)×B(H, N, J)

corresponding to the closed relations associated with bonds, as described in Propo-
sition 10, are precisely those that contain the sublattice

[(01,02), (01,12)] ∪ [(01,12), (11,12)].

Some of the relations discussed in the mathematical foundations of Formal Con-
cept Analysis are actually self-bonds, i.e., bonds from (G, M, I) to (G, M, I).
These include closed relations (associated with complete sublattices) and block
relations (associated with complete tolerance relations). For example, any closed
relation C ⊆ I automatically also is a self-bond. From Proposition 10 we know
that C then induces a closed relation in the context sum of (G, M, I). To both of
these closed relations corresponds a complete sublattice, the first being a sublat-
tice of B(G, M, I), the second of B(G, M, I) × B(G, M, I). We describe this in
the easiest case, when C := I.

Proposition 11. The concept lattice of the
formal context

(G, M, I) (G, M, I)
(G, M, G×M) (G, M, I)

is isomorphic to the order relation of B(G, M, I),
with the component-wise order.

G I

G I I

M M
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Before we give a proof, some words of explanation are needed. The context in this
proposition is the same as in Proposition 10, except that (G, M, I) and (H, N, J)
the same and R = C. The double occurrence of G (and of M) is meant as an
abbreviation for using two disjoint copies.

By Proposition 10, the incidence relation of this context is a closed relation of
the context sum (G, M, I)+(G, M, I). Its concept lattice therefore is isomorphic
to the direct square of B(G, M, I). The elements of the direct square are the pairs
of elements of B(G, M, I), with the component-wise order. The order relation
of B(G, M, I) is also a set of pairs, and is in fact a complete sublattice of the
square. The proposition gives the corresponding closed relation.

Proof. Let (G1, M1, I1), (G2, M2, I2) be disjoint copies of (G, M, I), let I12 ⊆
G×M and let i : G1 →M2, J : M2 →M1 be bijections such that

g1I1j(m2) ⇐⇒ g1I12m2 ⇐⇒ i(g1)I2m2.

Then for all A1 ⊆ G1, B2 ⊆M2 we get

AI12
1 = j−1(AI1

1 ) and BI12
2 = i−1(BI2

2 ).

The concepts of the direct sum (G1, M1, I1)+(G2, M2, I2) are precisely the pairs
(A1 ∪ A2, B1 ∪ B2), where (A1, B1) and (A2, B2) are concepts of (G1, M1, I1),
(G2, M2, I2), respectively. Such a pair is a concept of the closed subrelation

I1 I12× I2

iff

A1 = BI1
1 ∩BI12

2 , A2 = BI2
2 , B1 = AI1

1 , and B2 = AI12
1 ∩AI2

2 .

This simplifies to

A1 = BI1
1 ∩ i−1(A2), B2 = AI2

2 ∩ j−1(B1),

and further to

A1 = A1 ∩ i−1(A2), B2 = B2 ∩ j−1(B1),

which is satisfied iff (A1, B1) is a subconcept of (i−1(A2), j(B2)). 	

Observe that the formal context in Proposition 11 is the context product of

(G, M, I) with × , the standard context of the three-element chain. Thus the
concept lattice of that context is isomorphic to the tensor product of B(G, M, I)
with the three element chain.

Corollary 3. The order relation of a complete lattice V, considered as a sublat-
tice of V×V, is isomorphic to the tensor product of V with the three element
chain.

In particular, the free distributive lattice with n + 1 generators is isomorphic
to the order relation of the free distributive lattice with n generators, since
free distributive lattices are tensor powers of the three element chain. This is,
however, not surprising and can easily be obtained by a direct argument.
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6 Concatenating Bonds

A reason why some authors prefer a covariant version of Galois connections is
that such mappings can be concatenated. This is of particular importance if a
category theoretic point of view is taken. This was recently broadly elaborated by
Mori [9], who also studies the category of Chu Spaces [10]. A Chu map between
two formal contexts (G, M, I) and (H, N, J) is a pair (f, g) of mappings f : G→
H , g : N →M , satisfying

f(g) J n ⇐⇒ g I g(n)

for all g ∈ G, n ∈ N . His Chu correspondences correspond to what we call rela-
tional Galois connections here. The category of Chu correspondences, including
the functors that naturally arise there, is described in his work.

Covariant Galois connections correspond to bonds as Galois connections cor-
respond to dual bonds (see Theorem 2 and Corollary 1 above). Before we come
back to this, we give an elementary result on reducing a formal context. The
rôle of the following proposition is to motivate a “relation product” for relations
R ⊆ G ×N and S ⊆ H ×M between formal contexts (G, M, I) and (H, N, J),
defined by

R ◦I S :=
{
BS ×AR | (A, B) ∈ B(G, M, I)

}
.

A situation where this product plays a rôle is that of a formal context with
reducible objects and attributes. Recall from [5] that a subcontext is called dense
if every object and every attribute outside this subcontext is reducible. To a
certain degree, the structure “outside” a dense subcontext is determined by the
dense subcontext. The next proposition makes this precise.

Lemma 2. Let G, H, M, N be sets with G ∩H = ∅ = M ∩N , and let I, R, S, T
be relations with I ⊆ G×M , R ⊆ G×N , S ⊆ H×M , T ⊆ H×N (see Figure 5).
Then (G, M, I) is a dense subcontext of

K := (G ∪̇ H, M ∪̇ N, I ∪R ∪ S ∪ T )

if and only if the following conditions are all satisfied:

1. For each n ∈ N is nR an extent of (G, M, I),
2. for each h ∈ H is hS an intent of (G, M, I),
3. T = R ◦I S :=

{
BS ×AR | (A, B) ∈ B(G, M, I)

}
.

Condition 3 can equivalently be replaced by each of the following:

4. T = {(h, n) | nRI ⊆ hS}.
5. T = {(h, n) | hSI ⊆ nR}.

Proof. Conditions 1. and 2. are obviously necessary for (G, M, I) to be a dense
subcontext. To see that 3. also is necessary, pick an arbitrary h ∈ H and let

Ah := hSI ∩ hTR.
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H

G

M N

I R

S T

Fig. 5. With reference to Lemma 2

Both hSI and hTR are extents of (G, M, I) (the latter according to 1.), and there-
fore Ah is the extent of some concept (Ah, AI

h) ∈ B(G, M, I). When (G, M, I) is
dense, then A′

h = h′, which is short for AI
h = hS and AR

h = hT . From h ∈ AIS
h

we then get
{h} × hT ⊆ AIS

h ×AR
h ,

which proves that T is contained in the right hand side of 3., i.e., in R ◦I S.
For the other inclusion let (X, Y ) ∈ B(G, M, I) such that (h, n) ∈ Y S ×XR.

Then h ∈ Y S and thus Y ⊆ hS = AI
h, which implies that Ah ⊆ X and therefore

XR ⊆ AR
h . This together with n ∈ XR forces n ∈ AR

h = hT , i.e., (h, n) ∈ T .
To see that 3. is sufficient when 1. and 2. are given, we must infer from 3. that

each h ∈ H is reducible. So let Y := hS , X := Y I . Then Y is an intent, h ∈ Y S

and from 3. we get hT ⊇ XR. Let n ∈ hT \ XR. Then there is some (U, V ) ∈
B(G, M, I) such that h ∈ V S and n ∈ UR. But h ∈ V S yields V ⊆ hS = Y and
consequently U = V I ⊇ Y I = X . We get X ⊆ U and conclude UR ⊆ XR, which
is a contradiction to n ∈ UR, n /∈ XR.

To prove that 4. is equivalent to 3., assume first that (h, n) ∈ BS×AR for some
concept (A, B) ∈ B(G, M, I). The B ⊆ hS and A ⊆ nR, thus B = AI ⊇ nRI ,
which implies nRI ⊆ hS . Conversely, if nRI ⊆ hS, then A := nR is an extent
with corresponding concept intent B := AI = nRI . We get hS ⊆ B and thus
(h, n) ∈ BS ×AR. The proof for 5. is analogous. 	

The main reason why we are interested in this relation product ◦I is that in the
case of bonds it corresponds to the product of the morphisms. This has already
been described in [5]. We repeat the result here for completeness.

Proposition 12 (see Corollary 112 of [5]). From every bond R ⊆ G × N
between contexts (G, M, I) and (H, N, J) we obtain a pair (ϕR, ψR) of mappings

ϕR : B(G, M, I)→ B(H, N, J), ψR : B(H, N, J)→ B(G, M, I),

such that ϕR is a
∨

-morphism and ψR is a
∧

-morphism residual to ϕR by

ϕR(A, AI) := (ARJ , AR) ψR(BJ , B) := (BR, BRI).

Every
∨

-morphism is obtained in this way from exactly one bond, in fact,

R = {(g, n) | ϕγg ≤ μn}
= {(g, n) | γg ≤ ψμn}. 	
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I1

I2

I3

J12

J23

J13

Fig. 6. With reference to Proposition 13

Proposition 13 (see Proposition 113 of [5]). Let (G1, M1, I1), (G2, M2, I2),
and (G3, M3, I3) be contexts, and let (see Figure 6)
– J12 be a bond from (G1, M1, I1) to (G2, M2, I2),
– J23 be a bond from (G2, M2, I2) to (G3, M3, I3), and
– J13 be a bond from (G1, M1, I1) to (G3, M3, I3).

Moreover, let (ϕJ12 , ψJ12), (ϕJ23 , ψJ23), and (ϕJ13 , ψJ13) be the morphism pairs
corresponding to these bonds according to Proposition 12. Then

ϕJ13 = ϕJ23 ◦ ϕJ12 and ψJ13 = ψJ12 ◦ ψJ23

if and only if
J13 = J12 ◦I2 J23.

Proof. (g, m) is in the bond corresponding to ϕJ23 ◦ϕJ12 iff ϕ23◦ϕ12γg ≤ μn. The
intent of ϕ23 ◦ ϕ12γg is gJ12I2J23 . Therefore the condition is that n ∈ gJ12I2J23 ,
or, equivalently, that gJ12I2 ⊆ nJ23 . This is just condition 5. of Lemma 2. 	
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Abstract. Semantology has been introduced as the theory of semantic
structures and their connections which, in particular, covers the method-
ology of activating semantic structures for representing conceptual knowl-
edge. It is the main aim of this paper to explain and demonstrate that
semantic structures are in fact basic for conceptual knowledge processing
which comprises activities such as representing, infering, acquiring, and
communicating conceptual knowledge.

Contents
1. Conceptual Knowledge Representation: An Example
2. Semantology as Theory of Semantic Structures
3. Semantological Methods for Conceptual Knowledge Processing
4. Semantological Software
5. An Outlook

1 Conceptual Knowledge Representation: An Example

In this paper we assume that ConceptualKnowledge is based on the so-called“main
functions of human thought: concept, judgment, and conclusion” (cf. [Ka88], p.6).
Therefore we can benefit from the traditional philosophical logic with its basic
doctrine of concepts, doctrine of judgments, and doctrine of conclusions. Our as-
sumption allows us to understand Conceptual Knowledge Representation as the
presentation of semantic structures that makes possible to recover (at least partly)
the original knowledge (cf.[GW06]). Conceptual knowledge representations have
been elaborated in related work by methods of Formal Concept Analysis and Con-
textual Logic (cf. [Wi06]). How those representations may be formed shall be
demonstrated in this introductory section by an example.

The example originated in a research project of political scientists in the late
1980’s. This project was concerned with analysing international regimes and
their relationships on the basis of empirical material gained by different case
studies (see [Ko89]). An evaluation of the empirical material is presented in the

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 18–38, 2007.
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Fig. 1. Evaluations of international regimes
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1.1 power structure
e : egalitarian

h : hegemonial
1.2 inst. environment

i : institution
cn : commission
cy : country

f : forum
1.3 field of distribution

s : security
w : welfare
p : power

1.4 object of conflict
v : values

ai : absolute interests

ri : relative interests
1.5 net of politics

n : narrow
w : wide

1.6 transnationality

h : high

l : low
1.7 imputability

i : imputable

ni : not imputable
1.8 allocation modus

m : market
r : regulation
s : state activity

1.9 conincidence actors
e : equal
u : unequal

2.1.1 catchment area
g : global
r : regional

2.1.2 catchment area systemic

ia : intrasystemic west-west

ie : intersystemic
ew : east-west
g : global

2.2 extent
c : complex
n : narrow

2.3 origin

oi : one-sided interest

mi : mutual interest
2.4 impact of distribution

e : equal
u : unequal

2.5 level of action
so : society

st : state

io : international organisation
2.6 conincidence

c : consence

d : dissence
2.7 purpose/function

p : purpose

f : function
2.8 coherence

cc : concurrent

ct : contradictory
2.9 balance

b : balanced
u : unbalanced

2.10 degree of arrangement

h : high
m : middle

l : low
2.11 organizational stabilization

e : execution
a : advancement
wo : without organisation

3.1 degree of development

d : declaratory

ia : instructive to action
ip : implemented

3.2 effectivity

h : high
m : middle

l : low
3.3 durability

h : high
m : middle

l : low

Fig. 2. Legend for the evaluations of international regimes in Fig. 1

data table shown in Fig. 1. Those data tables may be viewed as elementary repre-
sentations of conceptual knowledge. The data table of our example, for instance,
presents a basic semantic structure which relates objects (international regimes)
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with attributes (e.g. power structure) and attribute values (e.g. egalitarian, hege-
monial). Richer semantic structures can be obtained by elaborating conceptual
structures inherent in the data. Such conceptual structures can be determined
by mathematical methods of Formal Concept Analysis [GW99] which shall be
briefly sketched here to make this paper more self-contained (cf. [VWW91]).

Formal Concept Analysis is based on the notion of a formal context which is
defined as a set structure (G, M, I) consisting of sets G and M together with a
binary relation I between G and M ; the elements of G and M are called formal
objects and formal attributes, respectively, and gIm is read: the formal object g
has the formal attribute m. A formal concept of the formal context (G, M, I) is
defined as a pair (A, B) with A ⊆ G, B ⊆ M , A = {g ∈ G | gIm for all m ∈ B},
and B = {m ∈ M | gIm for all g ∈ A}; A and B are called the extent and
the intent of the formal concept (A, B), respectively. The hierarchical relation
subconcept-superconcept - expressed by sentences as “the formal concept (A1, B1)
is a subconcept of the formal concept (A2, B2)” - is modelled by the definition:

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2)

The set of all formal concepts of (G, M, I) with this order relation is a complete
lattice, called the concept lattice of the formal context (G, M, I) and denoted by
B(G, M, I). Formal contexts are usually represented by cross-tables as in Fig. 3
and concept lattices by line diagrams as in Fig. 4, Fig. 5, and Fig. 6 (for more
detailed information see [GW99]).

As with most empirical data, the table in Fig. 1 is not in the form of a cross-
table from which hierarchical structures of formal concepts could be directly
derived. Fig. 1 presents a many-valued context which, in general, is defined as a
set structure (G, M, W, I) where G, M , and W are sets together with a ternary
relation I ⊆ G×M ×W such that (g, m, w1) ∈ I and (g, m, w2) ∈ I always imply
w1 = w2; (g, m, w) ∈ I is read: the object g has the value w for the attribute m.
In the many-valued context of Fig. 1, for instance, the object antarctic regime
has the value hegemonial for the attribute power structure. To obtain formal
concepts, the many-valued context has to be transformed into a formal context
as follows: The set of potential values of each (many-valued) attribute m ∈ M
is interpreted as the object set Gm of a conceptual scale (Gm, Mm, Im) which,
in Formal Concept Analysis, is understood as a formal context with a clear
conceptual structure reflecting some meaning. With those chosen scales, one
derives the formal context (G,

⋃̇
m∈MMm, J) where gJn :⇔ wImn for (g, m, w) ∈

I and n ∈ Mm (cf. [GW99]). The derived context of the many-valued context in
Fig 1 is shown in Fig. 3; some concept lattices of the chosen scales can be seen
in Fig. 4.

A comprehensive semantic structure for the data table in Fig. 1 is given by
the concept lattice of the formal context in Fig. 3. Unfortunately, that concept
lattice consists of 1,535 formal concepts. Therefore a presentation of the full
lattice as a human-readable diagram is difficult and barely within reach. But,
for almost all questions posed by the researchers, it was enough to examine much
smaller concept lattices of suitable subcontexts of the formal context in Fig. 3.
Let us demonstrate this in two cases (cf. [VWW91]):
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distribution:equal
distribution:unequal
levelofaction:sociaty
levelofaction:state
levelofaction:intern.organisation
consent
dissent
purpose

function
concurrent
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Fig. 3. Derived context of the many-valued context in Fig. 1
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Fig. 4. Some conceptual scales for the many-valued context in Fig. 1

First, we consider the seemingly plausible hypothesis: Intense regimes are
found mostly under hegemonial structures. Since a previous analysis of the data
has shown that the (many-valued) attribute degree of arrangement is a good
indicator for the intensity of a regime, the researchers could concentrate on
the conceptual scales degree of arrangement and power structure, the concept
lattices of which are presented in Fig. 5 (let us recall that, in a line diagram
representing a concept lattice, there is an ascending path of line segments from
a circle labelled by an object name to a circle labelled by an attribute name
if and only if the object has the attribute). The line diagram makes apparent
that there are more regimes with egalitarian structure than with hegemonial
structure, especially among the regimes of middle or high degree of arrangement.
This was interpreted by the researchers in the way that the data do not support
the hypothesis.

Secondly, a concept lattice is used to examine the following hypothesis: In
a setting of dense interactions international regimes support the enactment of
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Fig. 5. Regime intensity and power structure

Fig. 6. Relative importance of purpose and function of regimes
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a specific agreement (purpose), whereas in a situation/setting charaterized by a
low level of inter- and transnational relations regimes have the function of pro-
viding convergent actors’ expectations to enable them to come to international
agreements. To test this hypothesis, the researchers selected the subcontext de-
termined by the attributes transnationality: high, transnationality: low, intrasys-
temic: west-west, intersystemic, east-west, global, purpose, and function. Its con-
cept lattice presented in Fig. 6 shows that all regimes between western industrial
nations have a high density of transnational references and are directed by their
object or aim. For instance, the regime Rhine is active because the nations at
the river Rhine wish to clear the water. On the other hand, regimes which are
directed by their function (e.g. to establish convergent actors’ expectations) have
only few transnational references and the involved countries belong to different
systems. Such conceptual analysis brought the researchers to the conclusion that
the data do not contradict the hypothesis, but they do also not fully support it;
on this case more data are needed.

2 Semantology as Theory of Semantic Structures

According to our introductory assumption, concepts are the basic units of rep-
resenting and processing Conceptual Knowledge. This corresponds well to the
concept understanding in Piaget’s structure-genetic approach to developmen-
tal psychology (cf. [Pi70]) where concepts are considered as cognitive structures
(see also [Se01]). Changing from Piaget’s epistomological view to the semantical
view of knowledge represention makes it appropriate to replace the term “cog-
nitive structure” by the term “semantic structure” for describing concepts and
their meaningful combinations in knowledge representation. The general theory
of semantic structures and their connections has been named “Semantology” in
[GW06].

Concept hierarchies represented as concept lattices have proven to be useful and
well communicable semantic structures. For example, the Research Group on Con-
cept Analysis of the TU Darmstadt presented the so-called TOSCANA sofware at
the CeBIT ’93 in Hannover/Germany and, in particular, showed results of the col-
laboration with the political scientists about international regimes as discussed in
Section 1. Once the Hessian Science Minister came to our presentation at the fair
and saw also the diagram of Fig. 5. He immediately understood the relationships
and was very surprised that the hegemonial regimes are not dominant under the
intense regimes; when he left, he even turned back to point with his finger to the
circle representing the egalitarian intense regimes and said: “Unbelievable!”.

The meaning of semantic structures in Conceptual Knowledge Representation
and Processing can be analysed on at least three levels. This shall be briefly
scatched:

First, there is the meaning on the concrete level on which the considered
conceptual knowledge originates: this is usually the semantics belonging to the
sciences whose language and understanding are used to describe that knowledge.
In the example of Section 1, the meaning on the concrete level is given by the
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semantics of the political sciences, in particular of the researchers analysing
international regimes. For instance, the meaning of all word concepts in Fig. 1
is that on which the experts for international regimes research agree.

Second, there is the meaning on the general philosophic-logical level on which
the semantics is highly abstracted from the semantics of the concrete level, but is
still related to actual realities. It is the semantics of the traditional philosophical
logic based on the main functions of human thought: concept, judgment, and
conclusion. For instance, the line diagram in Fig.5 represents a concept hierarchy
in the sense of philosophical logic which understands concepts to be constituted
by their extensions and intensions.

Third, there is the meaning on the mathematical level on which the semantics
is strongly restricted the purely abstract: like numbers, ideal geometric figures
and, since the twentieth century, set structures (and their generalizations). This
very rigid semantics makes possible the high consensus about the validity of
mathematical results, of which the semantic structures may also benefit. How
philosophic-logical concept hierarchies can be successfully mathematized by con-
cept lattices has already been explained and demonstrated in Section 1.

Emphasizing the three levels of semantics for semantic structures has been
inspired by Peirce’s classification of sciences in which Mathematics is viewed as
the most abstract science studying hypotheses exclusively and dealing only with
potential realities, Philosophy is considered as the most abstract science dealing
with actual realities, while all other sciences are more concrete in dealing with
special types of actual realities (cf.[GW06]).

According to Peirce, mathematicians are “gradually uncovering a great Cos-
mos of Forms, a world of potential being” ([Pe92], p.120). Peirce valued this
growing cosmos of mathematical forms so far-reaching that for him all deduc-
tive reasoning will finally become mathematical reasoning. This underlines that
appropriate mathematizations of semantic structures and their relationships are
very important for understanding and handling those structures. For creating
adequate mathematizations, elaborated semantic structures on the philosophi-
cal level may function as a useful bridge to reach well abstracted mathematical
structures from given concrete structures. For instance, conceptual structures
inherent in the data table about international regimes in Fig. 1 could be made
mathematically explicit in labelled line diagrams of concept lattices as, for in-
stance, in Fig. 4, Fig. 5, and Fig. 6 because the philosophic-logical understand-
ing of concepts constituted by their extension and intension could be naturally
turned into the mathematical definition of formal concepts of formal contexts,
which form concept lattices.

An extremely close connection between the concrete level and the mathemat-
ical level is that between a concrete cross-table as the one in Fig. 3 and the
formal context represented by that cross-table. But even more valuable is the
close connection between the concrete cross-table and the labelled concept lat-
tice of the corresponding formal context, because the concrete cross-table can
be completely reconstructed from that concept lattice, i.e., the labelled con-
cept lattice represents the full concept hierarchy inherent in the considered
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cross-table. A concrete data table - such as the one in Fig. 1 - corresponds
uniquely to the many-valued context represented by that data table. But there
is not a unique concept lattice derived from the many-valued context. Only af-
ter choosing for each (many-valued) attribute a meaningful conceptual scale as
explained in Section 1, a uniquely determined formal context is derived. Thus,
the connection between the concrete level and the mathematical level is in this
case a consequence of the choice of meaningful scales. Despite the dependence
on those choices, the connection between the two levels is still transparent for
human discourse.

Less transparent is when data are mathematically reduced to what is thought
to be the essentials, which usually does not allow to reconstruct the original
data back from the essentials. Such opaques endanger a successful development
of substantial semantic structures in human thought and should therefore be
critically judged. It is important that semantic structures and their connections
can be tested with respect to their meaningfulness. Measurement theory is a
discipline which has convincingly investigated the meaningfulness of applications
of mathematical models in a wide range of fields (see [KLST71]).

3 Semantological Methods for Conceptual Knowledge
Processing

Semantic structures are not only fundamental for representing conceptual knowl-
edge, they more generally play a basic role in processing conceptual knowledge.
The main reason for this is that human knowledge is formed in a continuous pro-
cess of thinking, arguing, recognizing, and communicating. Conceptual Knowl-
edge Processing shall therefore be understood as the general discipline which
investigates activities such as representing, reasoning, acquiring, and communi-
cating conceptual knowledge (cf. [Wi94], [Wi97]).

Semantology as general theory of semantic structures and their connections
has also to develop and to maintain the methodology of activating and applying
semantic structures in Conceptual Knowledge Processing. Since concepts are the
basic semantic structures in Conceptual Knowledge, semantological methods for
Conceptual Knowledge Processing can be based on the analysis of concepts and
concept hierarchies according to the threefold semantics discussed in Section 2.
For instance, the derivation of the data table in Fig. 1 represented as cross-table
in Fig. 3 was performed by applying the semantological method “Conceptual
Scaling” [GW89]. From the semantological viewpoint, the data table in Fig. 1
represents a semantic structure consisting of object concepts, attribute concepts,
and attribute value concepts such that each pair of object concept and attribute
concept uniquely determines an attribute value concept. Turning this semantic
structure into the semantic structure represented by the cross-table in Fig. 3 is
guided by so-called conceptual scales which are viewed as semantic structures of
the same type as the one in Fig. 3, namely they consist of related pairs of an
object concept and an attribute concept represented in the corresponding table
by a cross as shown in Fig. 3 and Fig. 4.
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Another semantological method is “Determining a Concept Hierarchy”. This
method derives, for instance, from the semantic structure which is represented by
the sub-table in Fig. 3 consisting of the columns with the headings transnational-
ity: high, transnationality: low, intrasystemic: west-west, intersystemic, east-west,
global, purpose, and function, the semantic structure represented by the labelled
line diagram in Fig. 6. The method “Determining a Concept Hierarchy” is one
of six basic semantological methods for Conceptual Knowledge Representation
discussed in [GW06].

In [Wi06], 38 methods of Conceptual Knowledge Processing are presented, all
of them are of semantological nature. With the focus

– on Conceptual Knowledge Representation, nineteen methods are discussed
under the class headings: 1. Conceptual Knowledge Representation, 2. De-
termination of Concepts and Contexts, 3. Conceptual Scaling, 4. Conceptual
Classification,

– on Conceptual Knowledge Inference, ten methods are discussed under the
class headings: 5. Analysis of Concept Hierarchies, 6. Aggregation of Con-
cept Hierarchies, 7. Conceptual Identification, 8. Conceptual Knowledge In-
ferences,

– on Conceptual Knowledge Acquisition, five methods are discussed under the
class headings: 9. Conceptual Knowledge Acquisition, 10. Conceptual Knowl-
edge Retrieval,

– on Conceptual Knowledge Communication, four methods are discussed under
the class headings: 11. Conceptual Theory Building, 12. Contextual Logic.

Applications of methods of conceptual knowledge representation have already
been presented in Section 1. Therefore the rest of this section shall be used
to give also an idea how to apply methods concerning infering, acquiring, and
comunicating conceptual knowledge.

Conceptual Knowledge Inference is usually activated on already represented
knowledge. How this is done shall be demonstrated by an exhibit which was
designed for the Symmetry Exhibition at the Mathildenhöhe Darmstadt in 1986
(see [Ga86], p.130). The interactive exhibit was based on a computer presentation
of the concept lattice representing the 17 symmetry types of two-dimensional
patterns und their interrelationships. An example of such a pattern is shown
in Fig. 7. The 17 symmetry types are represented in the concept lattice by the
object concepts which are indicated in the line diagram of Fig. 8 by the circles
having a black lower half; the possible symmetry transformation are represented
in the diagram by circles having a black upper half (cf. [Wi00b], p.363).

At the exhibition visitors were invited to determine the symmetry type of two-
dimensional patterns by using the lattice presentation on the computer screen.
For the pattern example in Fig. 7 this could be done as follows: The user might
first recognize that a black point in the pattern is the center of a 90◦-rotation
which transforms the (infinitely extended) pattern onto itself. Therefore the user
marks “rota90” in the list of symmetry transformations at the computer screen.
This has the effect that all circles turn into grey except the circles labelled by
“p4”, “p4m”, and “p4g”, respectively, and the circle which is linked with those
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Fig. 7. What is the symmetry type of the shown two-
dimensional pattern?

three circles; furthermore, in the list of symmetry transformations, all those
transformations are erased which do not apply in patterns having the attribute
“rota90” (for instance “rota120”). Such inferential support might help the user
to find out that the center of a 90◦-rotation of the pattern lies on the axis of
a glide-reflection, i.e. the pattern has the attribute “rota90ongli”. Marking this
attribute in the present list of symmetry transformations gives the result that
the pattern is of type “p4g” and has all those symmetry transformations which
are then shown in the final transformation list. The line diagram in Fig. 8 shows
that the object concept of “p4g” equals the attribute concept of “rota90ongli”,
which even visualizes the attribute implication:

{“rota90ongli”} =⇒ {“rota90offref”,“rota180onref”,“4glideref”,“2reflect”}.

Conceptual Knowledge Acquisition, first outlined in [Wi89] as a methodology
of Formal Concept Analysis, shall here only be demonstrated by an application
of the manifoldly used “attribute exploration” (method M9.1 in [Wi06], see also
[GW99], p.85). Our application deals with the question: “How can adjectives
be used to judge upon musical compositions?” For allowing a transparent ex-
planation of the method, we restrict ourselves to the five adjectives “lively”,
“sprightly”, “rhythmizing”, “fast”, and “playful” (a more extensive treatment
of the above question can be found in [WW06]). Now, the underlying knowl-
edge universe for the attribute exploration is fixed as the formal context having
as its formal objects all compositions of classical music and as attributes the
five listed adjectives; the object-attribute-relation consists of those pairs which
combine a composition with an adjective applying to that composition. The uni-
versal knowledge acquired by the attribute exploration consists of all attribute
implications valid in the fixed universal context.
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Fig. 8. Concept lattice of the 17 symmetry types of two-dimensional patterns

The exploration procedure may start with declaring some pre-knowledge which
in our example shall be the information that Bartok’s Concert for orchestra has
as attributes “lively”, “sprightly”, “rhythmizing”, and “playful” but not “fast”
and Bach’s 3rd Brandenburg concerto, 3rd movement, has as attributes “lively”,
“sprightly”, “fast”, and “playful” but not “rhythmizing”. This information is
represented in a 2 × 5-protocol context. Then the exploration program presents
attribute implications to experts who have to judge whether the implications are
valid in the universal context or not; in the case of “not”, the experts have to
name a musical counterexample to the presented implication. For our example,
the sequence of questions and answers developed into the following list:

1. Are all compositions “lively”, “spritely”, “playful”? No!
Counterexample: Beethoven: String quartett Op. 131, final movement

2. Is “playful” =⇒ “lively”, “sprightly” valid? No!
Counterexample: Bizet: Suite arlesienne

3. Is “fast”, “playful” =⇒ “lively”, “sprightly” valid? No!
Counterexample: Ligeti: Continuum
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4. Is “fast”, “playful” =⇒ “lively” valid? Yes!
5. Is “sprightly =⇒ “lively”, “playful” valid? Yes!
6. Is “lively” =⇒ “playful” valid? No!

Counterexample: Bach: WTP 1: prelude c minor
7. Is “lively”, “rhythmizing” =⇒ “sprightly”, “playful” valid? No!

Counterexample: Mahler: 9th symphony, 2nd movement (Ländler)
8. Is “lively”, rhythmizing, “fast” =⇒ “sprightly” valid? Yes!
9. Is “lively”, rhythmizing, “fast” =⇒ “sprightly”, “playful” valid? No!

Counterexample: Beethoven: Moonlight sonata, 3rd movement

In this procedure, each counterexample is instantly represented in the growing
protocol context by marking the attributes which apply to the chosen coun-
terexample. This leads finally to the formal context in Fig. 9 whose attribute
implications are the same as the attribute implications of the universal context.
Thus, the concept lattice in Fig. 10 is isomorphic to the concept lattice of the
universal context which therefore has the Duquenne-Guigues-Basis: 1. “fast”,
“playful” =⇒ “lively”, 2. “sprightly =⇒ “lively”, “playful”, 3. “lively”, rhyth-
mizing, “fast” =⇒ “sprightly”. The performed attribute exploration based on
an algorithm created by B. Ganter [Ga86b] was executed with P. Burmeister’s
program “ConImp” [Bu03].

Fig. 9. Formal context derived from an attribute exploration

Conceptual Knowledge Communication is necessary in all performances of Con-
ceptual Knowledge Processing in which creative human thought plays a constitu-
tive role in its process (cf. [SWW01]). We shall only demonstrate this here by an
application of the method “Theory Building with TOSCANA” (M11.2 in [Wi06]).
The method has been substantially used to support a dissertation about “Sim-
plicity. Reconstruction of a conceptual landscape in the esthetics of music of the
18th century”. The methodological foundation for this application was elaborated
in [MW99]. The empirical collection of objects was given by 270 historical docu-
ments which were made accessible by a normed vocabulary of more than 400 text
attributes. Those text attributes were used to form more general attributes for the
conceptual scales of the approached TOSCANA-system. By repeatedly examining
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Fig. 10. Concept lattice of the formal context in Fig. 9

aggregations of scales and their concept lattices many improvements were made
so that, finally, a well-founded TOSCANA-system was established. All this has
been considered as a convincing process of theory building which could success-
fully support musicological research (see [Ma00] and [Wi05a], p.23ff.).

4 Semantological Software

In order to support semantological methods for Conceptual Knowledge Process-
ing, new software paradigms need to be developed and evaluated. For more than
twenty years this idea has led to various software frameworks that support one
or multiple semantological methods, in particular, the 38 methods presented in
[Wi06]. In this section we survey some of the software tools that support seman-
tological methods. The approach we take in the presentation is broadly chrono-
logical and, where appropriate, we tie the software to its Conceptual Knowledge
Processing methods (shortly CKP-methods) identified in [GW06] and [Wi06].
The best (and most complete) survey coverage for Conceptual Knowledge Pro-
cessing can be found in the PhD thesis of T. Tilley [TT04]. However, our purpose
is to identify examples of software that support semantological CKP-methods.

In the early 1980th, when Formal Concept Analysis started to be developed in
the Research Group on General Algebra at Darmstadt University of Technology,
personal computers became available at universities. This had the effect that
several members of the Darmstadt group (B. Ganter, M. Skorsky, F. Vogt etc.)
wrote useful PC-programs for basic procedures of Formal Concept Analysis. Here
we only emphasize P. Burmeister’s pioneering program (written in PASCAL)
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which is still available under the name “ConImp” in Windows (DOS) and Linux
(see [Bu03]).

ConImp is text-based and has no capability for graphics and lattice rendering,
the program can however be used to manipulate formal contexts and compute
concept listings from which a line diagram can be drawn. Furthermore, the
Duquenne-Guigues-Basis of the attribute implications of a finite context can be
computed by ConImp. Subsequently, even in 3-valued contexts with the values
“true”, “false”, and “unknown”, ConImp can be used for attribute exploration to
determine the implicational knowledge about a given conceptual universe by a
question and answering dialogue as far as possible with the missing parts clearly
indicated. In these ways, ConImp is able to support CKP-methods classified
in Section 3 under the classes 1., 2., 3., 4., 5., 7., 8., and 9. ConImp remains a
progenitor for the community in terms of its capacity to deliver an understanding
of Conceptual Knowledge Processing though it is still useful, in particular as a
demonstrator of the early willingness of the CKP research community to build
practical tools for CKP problem solving and analysis. In the semantological sense
ConImp is the most complete and influential program in Conceptual Knowledge
Processing. It is therefore interesting to note that it has never been re-engineered
for modern operating environments. This task remains as a challenge to the global
CKP community.

Also in the 1980’s, V. Duquenne started in Paris the development of software
for rendering concept lattices which is available under the name “GLAD: General
Lattice Analysis and Design” [Du05]. This software is written in FORTRAN
with the lattice rendering in the Hewlett Packard Graphics Language (HPGL).
While Duquenne’s program broadly supports the CKP-method of representing
a concept lattice by a labelled line diagram, it could not be said to be an analysis
framework since it does not support the modern notions of software re-usability
nor did it create a broad user base. The fact that GLAD was not fully reported
until 2005 reinforces its minor impact to the broader Conceptual Knowledge
Processing community. We therefore consider GLAD an early proof of concept
for more extensible CKP software frameworks for drawing concept lattices that
subsequently followed or were developed in parallel.

The visual rendering of concept lattices by line diagrams has widespread ap-
peal - for a survey of this issue see [EDB04] - and therefore systems based on the
TOSCANA software (see [KSVW94], [VW95]) have enjoyed greater impact on
Conceptual Knowledge Processing than any others. Most importantly, the idea of
a development and analysis methodology of TOSCANA-systems (see [EKSW00],
[EGSW00]); in [BH05] described as Conceptual Knowledge Systems) has emerged
due to TOSCANA’s widespread use. The methodology (or workflow) for system
development using the TOSCANA tools allowed the CKP modelling to scale be-
yond the original research and to develop TOSCANA to a much broader audience.

A TOSCANA-system incorporates a multi-phase development process in which
two software tools - TOSCANA and Anaconda - interact with a relational
database and an intermediate format called a “conceptual systems file”
[VWW91]. The process starts with the data to be analysed being stored in a
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relational database. Knowledge from a domain expert is than used to create
queries in the form of conceptual scales using the Anaconda program. The
scales capture expert knowledge and are stored in the conceptual systems file.
As an intelligent schema, the conceptual systems file contains queries against the
relational database and allows to determine logical subcontexts as well as the
conceptual hierarchy. Anaconda not only helps to build logical scales, which
provide a library of views of the data for the conceptual knowledge system, but
is also a toolkit for creating and editing contexts and line diagrams representing
scales. The workflow of Anaconda aids the knowledge engineering process and
it can therefore be understood as an analysis and design tool.

Description of line diagrams - as well as conceptual scales - are stored in
the conceptual file format. TOSCANA takes as its input the associated concep-
tual file format and the relational database. In the methodology and workflow
of TOSCANA-systems, TOSCANA becomes the conceptual systems browser.
While TOSCANA users cannot create scales, the existing library of scales cre-
ated by Anaconda can be used to form nested line diagrams. TOSCANA is
the conceptual browser, tying together (or realising) the relational data via its
interaction with the conceptual systems file as an intelligent schema.

There are three versions of TOSCANA based on the Formal Concept Analysis
C++-library of F. Vogt [Vo96]. For several years an open-source Java version -
ToscanaJ [BH05] - has also been available. The ToscanaJ scale and context editor
are given by the programs Siena and Elba. These tools exhibit subtle variations
on the initial workflow of TOSCANA-system development: including varying
degrees of interoperability with ODBC, Anaconda, ConImp, and another tool
called “Cernato”.

Cernato, a program developed by P. Becker and Navicon, is CKP software wor-
thy of mention because it departs from Conceptual Knowledge Systems workflow
of TOSCANA-systems: effectively combining both Anaconda and TOSCANA
functionality into a single software framework. In Cernato the context is pre-
sented in the form of a spreadsheet and line diagrams are constructed incre-
mentally. Scales are called “views” and nested line diagrams are not supported.
The unconstrained nature of Cernato is both its most important asset and its
most significant problem. Cernato is difficult for novices and can easily gen-
erate unwieldy line diagrams. Our experiments teaching Conceptual Knowledge
Processing using Cernato at the University of Queensland proved that Cernato
could not easily be used or understood by 4th year computer science students
who had elementary training in the methods of Conceptual Knowledge Process-
ing. Cernato is therefore a tool more suited to CKP experts: the reverse of its
design intention.

A similar argument runs for ConExp [Ye00], another Java-based open-source
software development for Conceptual Knowledge Processing. Like Cernato, Con-
Exp combines context creation, lattice line diagrams design, and data reali-
sation into a single tool. Similar usability concerns are apparent for ConExp
as for Cernato however. On the positive side, ConExp implements the largest
set of operations from the foundational book [GW99], including calculation of
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association rules and the Duquenne-Guigues-Basis of implications. The program
is therefore modern CKP software that most closely matches the functionality
of ConImp. Unfortunately, the graphical representation of concept lattices is not
as satisfying as in Cernato and Anaconda. Neither ConExp nor Cernato have
been reported in any significant way in the CKP literature even though they are
widely used.

Experiences with Cernato and ConExp show the separation of TOSCANA
and Anaconda is a decompositional feature that reinforces the importance of
the management of complexity of semantological methods in Conceptual Knowl-
edge Processing. In the TOSCANA-system methodology, the management of
the context and the user-defined rendering of the line diagram as a conceptual
scale are the domain of Anaconda (or Siena and Elba when using ToscanaJ).
The realization of the scale line diagrams with data, or nested line diagrams
- multiple scales, one or more embedded within another - become the respon-
sibility of the TOSCANA-program. Thus there is a principle separation of
intent as design (in Anaconda) with extent as the realization of design (in
TOSCANA). This results in the TOSCANA-systems development methodology
reinforcing the underlying semantological methods in Conceptual Knowledge
Processing.

The systems we have surveyed to this point may give support to the first
eleven classes of semantological methods for Conceptual Knowledge Processing.
In each TOSCANA-system, and to various degrees, it is possible to: 1. Represent
conceptual knowledge in formal contexts and line diagrams of concept lattices;
2. Determine concepts and contexts; 3. Insert and combine conceptual scales; 4.
Conceptually classify objects; 5. Analyse concept hierarchies; 6. Aggregate con-
cept hierarchies; 7. Identify concepts and concept patterns; 8. Determine concep-
tual inferences; 9. Aquire conceptual information and knowledge; 10. Retrieve
conceptual information and knowledge; 11. Perform conceptual theory building
(cf. [Wi06]).

5 An Outlook

Higher level semantic structures in Conceptual Knowledge Processing which are
based on Contextual Logic [Wi00a] remain the realm of research software and
have yet to find a broad and general audience as have software systems such
as ConImp, ConExp, or TOSCANA. Contextual Logic has been developed as
a mathematization of the philosophical doctrines of concepts, judgments, and
conclusions. The mathematization of concepts follows the approach of Formal
Concept Analysis [GW99], and the mathematization of judgments uses, in addi-
tion, the Theory of Conceptual Graphs [So84]. The resulting formal judgments
are composed by formal concepts which are either concepts of a basic formal
context or are concepts of a k-ary relational context. Those contexts are taken
from a so-called power context family (for more details see [Wi00a]).

B. Groh, the author of TOSCANA 3.0, has demonstrated in [Gr02] the
importance of power context families in Conceptual Knowledge Processing by
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elaborating further the approach offered in [EGSW00]. Groh created a represen-
tation of relational data through realising a TOSCANA-system, adapted from
the source code of TOSCANA 3.0, for representing and searching airline flights in
Austria. Representations of knowledge - flight data - encoded in the TOSCANA-
system, which has been extended by its ability to accommodate power context
families, could be used to vizualize route-finding within in the airline timetable.
The results are rendered as a significantly reduced form of line diagram equiv-
alent to a directed graph. This rendering is well suited to the application while
abstracting some of the complexity of the underlying concept lattice as a repre-
sentation of the information space.

However convincing, Groh’s work serves only as a proof a concept of the value
of power context families. The real-world application of power context families
to Conceptual Knowledge Processing are as likely as not to be found within
the realm of computational linguistics and in learning relational structures to be
found in the description of prototypical texts in document classification domains
for precision-based information retrieval. This work has yet to be realised but is
a promising area of research and application for power context families.

Description Logics have become a popular subset of First-Order Logic that have
decidable tableau theorem provers and are sound and complete. Description Log-
ics have also become the de facto standard for representing knowledge in the Se-
mantic Web via W3C recommendations such as OWL. F. Dau and P. W. Eklund
[DE06] have explored whether several existing well-known diagrammatic reason-
ing systems (including conceptual graphs) are compatible with Description Logics,
which have no diagrammatic form. The main emphasis of this work is the evalu-
ation of spider and constraint diagrams as compared to conceptual graphs can
supplement the popularity of Description Logic by providing a principle way of
performing diagrammatic reasoning on the Semantic Web.

Concept graphs (CKP-method class “12. Contextual Logic” in [Wi06]), as ex-
pressions of formal judgments based on knowledge represented by an underlying
power context family, form the actual underlying mathematical basis for Con-
ceptual Knowledge Processing in general. Therefore those structures should be
explored further and worked off by CKP-methods to increase real-world appli-
cations of Formal Concept Analysis and Contextual Logic.
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Abstract. Different rule semantics have been successively defined in many con-
texts such as implications in artificial intelligence, functional dependencies in
databases or association rules in data mining. We are interested in defining on
tabular datasets a class of rule semantics for which Armstrong’s axioms are sound
and complete, so-called well-formed semantics. The main contribution of this pa-
per is to show that an equivalence does exist between some syntactic restrictions
on the natural definition of a given semantics and the fact that this semantics
is well-formed. From a practical point of view, this equivalence allows to prove
easily whether or not a new semantics is well-formed. We also point out the re-
lationship between our generic definition of rule satisfaction and the underlying
data mining problem, i.e. given a well-formed semantics and a tabular dataset,
discover a cover of rules satisfied in this dataset. This work takes its roots from a
bioinformatics application, the discovery of gene regulatory networks from gene
expression data.

1 Introduction

The notion of rules or implications is very popular and appears in different flavors
in databases, data mining or artificial intelligence communities. Famous examples of
rules are functional dependencies [1], implications [2] or association rules [3]. As such,
a simple remark can be done on such rules: their syntax is the same but their semantics
widely differs.

In this paper, we consider rules to be defined on tabular datasets. Basically, a tabular
dataset is equivalent to a relation over a set U of distinguished attributes in databases
terminology [4]. In this setting, a rule is an expression of the shape X → Y i.e. ”X
implies Y” with X, Y ⊆ U . The semantics of a rule X → Y over U is the meaning,
the sense one wants to give to this rule: Given a relation r, a rule X → Y is said to be
satisfied in r with the semantics s, noted r |=s X → Y if the semantics of the rule is
true (or valid) in r.

From our analysis of existing rule semantics, we identify two main components to
specify a rule semantics: the subsets of the relation on which the rule applies and the
predicates occurring in the ”if... then...” part of the rule. By the way, a natural and
”generic” definition of rule semantics can be elaborated in order to be able not only to
capture most of existing semantics already known on tabular datasets, but also to devise
new semantics specific to some application domains.
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We also chose to focus on those semantics verifying Armstrong’s axioms, i.e. seman-
tics for rules on which Armstrong’s axioms are sound and complete, so-called ”well-
formed semantics”. For functional dependencies and implications, this result is known
for a long time but more surprisingly, many other semantics also fit into this framework
[2]. Roughly speaking, our aim is to define syntactical boundaries of well-formed se-
mantics. Practical interests are for instance that some form of reasoning can be done on
rules (e.g. implication problem in linear time [5]). Moreover, it is also possible to work
on ”small” covers of rules [6, 7, 8] and to use data mining techniques specific to the
considered cover, but applicable to every well-formed semantics.

Paper contribution. The contribution of this paper is to show that an equivalence does
exist between some syntactic restrictions on the natural definition of a given semantics
and the fact that this semantics is well-formed.

From a practical point of view, this equivalence allows to prove easily whether or not
a new semantics is well-formed: So far, for a given semantics, a proof of the soundness
and the completeness of the Armstrong’s axioms for this semantics should be given.
Now, it is just enough to show that this semantics complies with the proposed syntactic
restrictions.

We also point out a relationship between our generic definition of rule satisfaction
and the underlying data mining problem, i.e. given a well-formed semantics and a re-
lation, discover a cover of rules satisfied in this relation. More precisely, we show how
a base of the closure system for any well-formed semantics can be computed from a
dataset.

Application. This work takes its roots from a bioinformatics application, the discov-
ery of gene regulatory networks from gene expression data. The challenge is to find out
relationships between genes that reflect observations of how expression level of each
gene affects those of others. The conjecture that association rules could be a model for
the discovery of gene regulatory networks has been partially validated, see for example
[9, 10, 11]. Nevertheless, we believe that many different kinds of rules between genes
could be useful with respect to some biological objectives and the restricted setting of
association rules could be not enough to cope with this diversity. Therefore, the main ap-
plication of this paper is to offer a framework in which biologists may define their ”own
customized semantics” for rules with regard to their requirements. It is worth noting that
other application domains could benefit from the propositions made in this paper.

Paper organization. We give in Section 2 the motivations of our proposition with ex-
amples of rule semantics. In Section 3, we propose a natural definition of a semantics
using some syntactic restrictions. In Section 4, we further restrict the syntax and give
the main result of this paper then we point out the relationships between our proposition
and the underlying data mining problem. In Section 5, we give the related contributions
of this work and finally, we conclude and give some perspectives in Section 6.

2 Motivating Examples

We give in the sequel three examples of semantics for tabular datasets, some of them in
the context of gene expression data.
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Table 1. A running example

r g1 g2 g3 g4 g5 g6 time

t1 1.7 1.5 1.2 -0.3 1.4 1.6 0
t2 1.8 -0.7 1.3 0.8 -0.1 1.7 1
t3 -1.8 0.4 1.7 1.8 0.6 -0.4 2
t4 -1.7 -1.4 0.9 0.5 -1.8 -0.2 3
t5 0.0 1.9 -1.9 1.7 1.6 -0.5 4

To illustrate the following examples, let us consider a relation r made of 5 tuples
over a set U of 6 attributes, given in Table 1. This relation represents a gene expression
dataset, each attribute being a gene with real numbers as domain.

Example 1. Let r be a relation over U and X, Y ⊆ U . Let s1 be a semantics studying
for example the levels of gene expression, i.e. the under- or over-expression of the
genes. Given a user-supplied threshold ε, s1 can be defined as follows:

r |=s1 X → Y if and only if ∀t ∈ r, if ∀A ∈ X, t[A] ≥ ε then ∀A ∈ Y, t[A] ≥ ε.

For example, with ε = 1.0 i.e. for over-expressed genes, the rule g1 → g3 is satisfied
in the relation given in Table 1 since ∀t ∈ r when t[g1] ≥ 1.0 then t[g3] ≥ 1.0.

This semantics is not too far from association rules, except that no explicit discretiza-
tion phase does exist and minimum support threshold is not taken into account with s1.

Example 2. We consider here that an order exists among tuples: In the context of gene
expression data, the first experience represents the state of a cell at the moment 0, then
after injection of a drug, the cell is analyzed six hours later to give the second experience
etc. until the fifth experience 30 hours later. This process allows to show the impact of a
drug on gene expression of the cell in the time. In that case, the time can be represented
as an external attribute as depicted in Table 1.

Let s2 be a semantics studying for example the evolution in time of gene expression
levels. Given a user-supplied threshold ε, s2 can be defined as follows:

r |=s2 X → Y if and only if ∀ti, ti+1 ∈ r such that ti and ti+1 are two consecutive
tuples, if ∀A ∈ X, ti+1[A]− ti[A] ≥ ε then ∀A ∈ Y, ti+1[A]− ti[A] ≥ ε.

For example, with ε = 1.0, the rule g2 → g4 is satisfied in the relation given in
Table 1 since ∀ti, ti+1 ∈ r when ti+1[g2]− ti[g2] ≥ 1.0 (i.e. for t2/t3 and t4/t5) then
ti+1[g4]− ti[g4] ≥ 1.0.

Example 3. Now we are interested in a semantics, called sd, studying the Euclidean
distance between gene expression profiles. Given a user-supplied threshold ε, sd can be
defined as follows:

r |=sd
X→Y if and only if ∀ti, tj ∈ r, if d(ti[X ], tj[X ])≥ε then d(ti[Y ], tj [Y ])≥ε.

where d is a function computing the Euclidean distance between two tuples on a set of
attributes.
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These three examples show that with the same syntax, a rule may have quite different
meanings and from the same dataset, several semantics can be defined and hopefully
interesting for the application domain.

3 A Generic and Natural Definition of a Semantics

In the sequel, we are going to explicit the common underlying structures of rule
semantics.

For a given dataset, the nature of the data being analyzed clearly influences the def-
inition of a semantics. Association rules and implications require binary data while
functional dependencies can be defined on arbitrary attribute domains. Furthermore,
external information may also be available and useful to define semantics. In exam-
ple 2, a time attribute have been added to define an order among tuples (see Table 1).

Moreover, the two important components in the definition of a rule semantics can be
identified:

• The subsets of the relation on which a rule applies. We can for example study tuples
one by one (e.g. implication or semantics given in example 1), we can also do a
pairwise comparison of tuples (e.g. functional dependencies or semantics given in
example 3) or compare the tuple i with the tuple i+1 (e.g. example 2) whenever an
order exists among tuples.
• The predicates occurring in the ”if Pred1 is true then Pred2 is true” part of the

rule. Note that these two predicates can be the same. For example, for functional
dependencies, the predicates can be formulated as: [ ∀A ∈ X, t1[A] = t2[A] ],
where t1, t2 are two tuples, and X is a subset of attributes. These predicates really
give the meaning of the semantics.

A ”generic” definition of a semantics based on this analysis is described in the sequel.
Given a relation r over U and two subset of attributes X, Y ⊆ U , the satisfaction of

a rule X → Y in r for a semantics s, noted r |=s X → Y , can be defined in a general
way as follows:

Definition 1. Let X, Y ⊆ U and r be a relation over U . The satisfaction of the rule
X → Y in r for a semantics s, noted r |=s X → Y , is defined by:
r |=s X → Y if and only if ∀r′ ⊆ r verifying c(r′), if Pred1(X, r′) is true then
Pred2(Y, r′) is true where:

• c(r′) specifies a constraint which has to be verified by r′ ⊆ r.
• Pred1(X, r′) (resp. Pred2(Y, r′)) is a predicate specifying a condition on X (resp.

Y ) over r′.

A semantics is thus characterized by a constraint c and two predicates Pred1 and Pred2

defined for a subset of attributes. The constraint c is an expression specifying the condi-
tion that the subset r′ of r must verify, to be considered in the predicates (e.g. [ |r′| = 2 ]
for functional dependencies). The predicates Pred1 and Pred2 are expressions which
have to be defined on X (or Y ) and r′ only. Neither other attributes nor other subsets
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of r are allowed in their definition. In other words, they must be defined on πX(r′)
(or πY (r′)).

In the sequel, we shall say that a semantics s complies with definition 1 if s can be
syntactically expressed within the setting of definition 1. The class C will denote the
class of semantics complying with definition 1.

3.1 Definition of the Constraint and the Predicates

We give some examples and define the permitted constraints and predicates.

Example 4. The three semantics s1, s2 and sd presented in examples 1, 2 and 3 can be
redefined to comply with the definition 1 as follows:

1. Semantics s1:
• c(r′) = [ |r′| = 1 ].
• Pred1(X, {t}) = Pred2(X, {t}) =

[ ∀A ∈ X, t[A] ≥ ε ].
2. Semantics s2:
• c(r′) = [ |r′| = 2 and for r′ = {ti, tj}, tj [time] = ti[time] + 1 ].
• Pred1(X, {ti, tj}) = Pred2(X, {ti, tj}) = [ ∀A ∈ X, tj[A]− ti[A] ≥ ε ].

3. Semantics sd:
• c(r′) = [ |r′| = 2 ].
• Pred1(X, {ti, tj}) = Pred2(X, {ti, tj}) =

[ d(ti[X ], tj[X ]) ≥ ε ].

More formally, the constraint c is a condition defined on the relation r′ and the set
of attributes U whereas the predicates Pred1 (resp. Pred2) are conditions defined
on the relation r′ and the set of attributes X (resp. Y ).
Conditions are defined inductively as follows:

A simple condition over a set of attributes X and a relation r, is an expression
of the form: <term> θ <term>, where:

• θ is a comparison operator: =, <, >,≤,≥, �=.
• <term> is one the following (with A, B ∈ X , Y ⊆ X and t ∈ r):
− A value in πX(r): t[A], t[B], ...
− A constant: a, b, 8, ε, null, ...
− A function: fct(r, X), fct(r, A), fct(t, Y ), ... e.g d(t[A], t[B]) or |r|.

A condition over X and r, is an expression composed of one or more simple
conditions over X and r, using the logical connectives: AND, OR, NOT, () and the
variables A, B, Y, ... (resp t) are introduced using ∀ and ∃ quantifiers over X (resp. r).

3.2 Removing Dummy Semantics

Some semantics may give rise to rules always (resp. never) satisfied in any dataset.
Therefore, these semantics are useless in practice and should be safely removed. We
shall say that these semantics are pathological semantics, their definition is given below.
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Definition 2. Let s be a semantics characterized by a constraint c and two predicates
Pred1 and Pred2.

The semantics s is said to be a pathological semantics if for any relation r over U ,
one of the following conditions is true:

• � ∃r′ ⊆ r verifying c(r′).
• ∀X, Y ⊆ U and ∀r′ ⊆ r verifying c(r′), Pred1(X, r′) is true and Pred2(Y, r′) is

false.
• ∀X, Y ⊆ U and ∀r′ ⊆ r verifying c(r′), Pred1(X, r′) false or Pred2(Y, r′) true.

Example 5. Let s the semantics partially defined as follows:

• c(r′) = [ |r′| = 1 and ∀A ∈ U, t[A] < 0 ].
• Pred1(X, {t}) = [ ∀A ∈ X, t[A] > 0 ].

s is clearly a pathological semantics since Pred1 is always false whatever the definition
of Pred2. For this semantics, all the rules are satisfied in any relation.

In the sequel, CP will denote the class of pathological semantics of C and CX will
denote non pathological semantics of C i.e. CX = C \ CP .

3.3 Well-Formed Semantics

A general framework can be borrowed from theoretical investigations performed over
functional dependencies and Armstrong’s axioms [12, 13]. This framework allows to re-
sume interesting properties defined for functional dependencies like reasoning on rules
and generating covers for rules. To be sure that a semantics fulfills this framework, the
notion of well-formed semantics can be defined as follows:

Definition 3. A semantics s is well-formed if Armstrong’s axioms are sound and
complete for s.

Let F be a set of rules, recall that the notation F 
 X → Y means that a proof of
X → Y can be obtained using Armstrong’s axiom system from F . Moreover, given
a semantics s, the notation F |=s X → Y means that for all relations r over U , if
r |=s F then r |=s X → Y . In other words, for any well-formed semantics s, 
 and
|=s coincide.

4 More Syntactic Restrictions

We have given the class CX of semantics based on a natural and ”generic” definition
(see definition 1) of a rule semantics, able to capture a wide class of semantics on tabular
datasets.

Moreover, since we are interested in well-formed semantics, a basic question comes
in mind: ”Is there an equivalence between the class of well-formed semantics and the
class CX?”

Not surprisingly, the answer turns out to be negative as shown in the following
counterexample.
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Example 6. Let s be a semantics defined as follows:

• c(r′) = [ |r′| = 1 ].
• Pred1(X, {t}) = [ ∀A ∈ X, t[A] = 1.0 ].
• Pred2(X, {t}) = [ ∀A ∈ X, t[A] = 2.0 ].

Clearly, the reflexivity axiom is not sound for this semantics.

Therefore, the idea is to find out further syntactic restrictions on rule satisfaction def-
inition in order to ensure the well-formedness of the semantics. In other words, given
a new semantics, we would not have to prove anything to be sure that Armstrong’s ax-
ioms apply: It would be just enough to show that the semantics complies with these
syntactic restrictions.

We propose a new definition below based on the definition 1.

Definition 4. Let X, Y ⊆ U and r be a relation over U . The satisfaction of the rule
X → Y in r for a semantics s, noted r |=s X → Y , is defined by:
r |=s X → Y if and only if ∀r′ ⊆ r verifying c(r′), if ∀A ∈ X , Pred(A, r′) is true
then ∀A ∈ Y , Pred(A, r′) is true where:

• c(r′) specifies a constraint which has to be verified over r′ ⊆ r.
• Pred(A, r′) is a predicate specifying a condition on A over r′.

The first item of this new semantic definition does not change with regard to the defini-
tion 1. Nevertheless, the difference is twofold:

• Firstly, the two predicates Pred1 and Pred2 are equivalent.
• Secondly, a restriction is posed on the predicate: Now, it must be satisfied for each

single attribute A ∈ X instead of being satisfied for the subset of attributes X .

Since two syntactically different definitions of predicates could be equivalent, we
need to precisely define what ”equivalent” means. Intuitively, two predicates are equiv-
alent if for any relation r and for any subset of attributes X ⊆ U , Pred1 and Pred2 are
satisfied for X on the same subsets of r. Here is the formal definition:

Definition 5. Let s be a semantics characterized by a constraint c and two predicates
Pred1 and Pred2. The two predicates Pred1 and Pred2 are said to be equivalent,
denoted by Pred1 ≡ Pred2, if and only if for any relation r and for any subset of
attributes X ⊆ U , we have:
{r′ ⊆ r | r′ verifying c(r′) and Pred1(X, r′) is true} = {r′ ⊆ r | r′ verifying c(r′) and
Pred2(X, r′) is true}.
In the sequel, we shall note by CA the class of rule semantics complying with defini-
tion 4, CA being a subset of CX .

Recall that pathological semantics for which all the rules are always true (or never)
are not considered in CX .
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4.1 Main Result

The main result of the paper gives an equivalence between well-formed semantics and
semantics complying with definition 4 and is stated as follows:

Theorem 1. Let s ∈ CX be a rule semantics. The semantics s is well-formed if and
only if s ∈ CA.

Proof. Let s ∈ CX be a rule semantics. We have first to prove that if s ∈ CA then s is
well-formed and secondly that if s is well-formed then s ∈ CA or equivalently that if
s �∈ CA then s is not well-formed.

Lemma 1. Let s ∈ CX be a rule semantics. If s ∈ CA then s is well-formed.

Proof. This proof borrows the classical proof of soundness and completeness for func-
tional dependencies [14]. The only technical difficulty is to use the constraint c in order
to avoid to explicitly handle the couple of tuples on which functional dependencies are
defined.

The (only if) part of the proof is somewhat surprising since it tells us that any well-
formed semantics complies with definition 4:

Lemma 2. Let s ∈ CX be a rule semantics. If the semantics s is well-formed, then
s ∈ CA.

Proof. We have to show that if s is well-formed, then s ∈ CA or equivalently, if s �∈ CA

(i.e. s does not comply with definition 4) then s is not well-formed.
Suppose that s does not comply with definition 4, two cases are possible: Either the

two predicates are not equivalent or they are equivalent with the following restriction:
it does not exist an equivalent predicate which can be formulated as a condition on each
single attribute.

Let us consider the first case, i.e. Pred1 and Pred2 are not equivalent: In that case,
since s ∈ C, it does exist a relation r and a subset of attributes Y ⊆ U such that
{r′ ⊆ r | r′ verifying c(r′) and Pred1(Y, r′) is true} �= {r′ ⊆ r | r′ verifying c(r′) and
Pred2(Y, r′) is true}.

Two cases are thus possible:

• ∃r′ ⊆ r verifying c(r′) such that Pred1(Y, r′) is true and Pred2(Y, r′) is false: Let
us assume that s is well-formed. By reflexivity, we have ∀X ⊆ Y , r |=s Y → X
and thus r |=s Y → Y i.e. ∀r′ ⊆ r verifying c(r′), if Pred1(Y, r′) is true then
Pred2(Y, r′) is true which is a contradiction.
• ∃r′ ⊆ r verifying c(r′) such that Pred1(Y, r′) is false and Pred2(Y, r′) is true:

Without loss of generality, let us assume there exists X ∈ U \ Y and Z ∈ U \ Y
such that Pred1(X, r′) is true and Pred2(Z, r′) is false, as depicted in Table 2
(clearly, such a relation r always exists when s is in CX , otherwize s would be in
CP ). Thus, we have r′ |=s X → Y and r′ |=s Y → Z .

Assume now that s is well-formed. By transitivity, we should have r′ |=s X →
Z , which is false and leads to a contradiction.
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Table 2. Example

r X Y Z ...
... ... ... ... ...
r′{ P1 true P1 false and P2 true P2 false ...
... ... ... ... ...

Finally, we have shown that if Pred1 and Pred2 are not equivalent, then s is not-well-
formed.

Now, let us consider the second case, i.e. Pred1 ≡ Pred2 but they are not equivalent
to the predicate Pred′(Y ) = [∀A ∈ Y, Pred1(A)]: In that case, it does exist a relation r
and a subset of attributes Y ⊆ U such that {r′ ⊆ r | r′ verifying c(r′) and Pred1(Y, r′)
is true} �= {r′ ⊆ r | r′ verifying c(r′) and ∀A ∈ Y, Pred1(A, r′) is true}. We can show
that reflexivity and transitivity axioms are not sound in r′. The proof is similar to the
previous one and is omitted.

4.2 Usefulness of These Syntactic Restrictions

We shall point out the interest of this result through several examples.

Example 7. The semantics s1 and s2 (see example 4) clearly comply with the defini-
tion 4, i.e. s1, s2 ∈ CA. From theorem 1, the following result holds:

Corollary 1. The semantics s1 and s2 are well-formed.

Example 8. For the semantics sd, we have the following result:

Corollary 2. The semantics sd is not well-formed.

Proof. We have to show that the semantics sd does not comply with definition 4.
The semantics sd complies with definition 1, but the predicate Pred(X, {ti, tj}) =
[ d(ti[X ], tj[X ]) ≥ ε ] is not equivalent to the predicate Pred′(X, {ti, tj}) = [ ∀A ∈
X, d(ti[A], tj [A]) ≥ ε ]. Indeed, let us consider the following counterexample where
Pred(X, r) is true and Pred′(X, r) is false:

Let r be the relation described in Table 3 and let ε = 4.

Table 3. Counterexample

r A B

t1 2 10
t2 5 6

We can see that d(t1[AB], t2[AB]) = 5 i.e. Pred(AB, r) is true whereas d(t1[A],
t2[A]) = 3 i.e. Pred′(AB, r) is false . This counterexample shows that s �∈ CA and
thus, by theorem 1, that s is not well-formed.
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4.3 Relationships with Data Mining

In the setting of this paper, we may question about the underlying discovery problem for
any well-formed semantics i.e. for semantics s ∈ CA. Rule generation for a semantics
s ∈ CX \ CA is also interesting but out of the scope of this paper.

First, recall that a one-to-one correspondence does exist between a set of rules and
a closure system (A closure system C on U is such that U ∈ C and ∀X, Y ∈ C,
X ∩ Y ∈ C) [2]. Second, given a relation r and a well-formed semantics s, we can
always define a closure system with respect to the set of satisfied rules in the relation r
for the semantics s.

Two main techniques do exist to compute a cover of rules:

• Those which enumerate the closure system to generate for example a minimum
cover [7], generally used for association rules generation [15].
• Those which avoid the enumeration of the closure system to generate the canonical

cover, generally used for the inference of functional dependencies [12, 13].

In both cases, the first step is to compute a base of the closure system from the
dataset. The base is obviously specific to the considered semantics and can be formu-
lated as follows:

Definition 6. Let r be a relation over U and s a given well-formed semantics. Let Bs(r)
the set defined as follows:

Bs(r) =
⋃

r′⊆r | c(r′)

{A ∈ U | Pred(A, r′) is true}.

We have the following result which extends in our context a well-known result obtained
in the setting of functional dependencies [16]:

Proposition 1. Bs(r) is a base of the closure system with respect to the set Fs(r) of
satisfied rules in r for the semantics s.

Proof. Let us recall that a sub-family B of a closure system C is a base if Inf ⊆ B ⊆
C where Inf is the set of meet-irreducible sets. The proof is omitted.

We note that the base Bs(r) is defined at the level of single attributes A ∈ U , which
shows the necessity that the semantics complies with the definition 4.

From a data mining point of view, the computation of Bs(r) is a crucial step since
data accesses are only performed here.

5 Related Works and Discussion

To the best of our knowledge, we are not aware of related works in the literature deal-
ing with syntactical characterizations with regard to some inference systems. Neverthe-
less, related contributions have been done on association rules in data mining [3, 17]
and functional dependencies in databases [13, 18]. Rule mining often results in a huge
amount of rules and as a consequence, rules turn out to be useless for experts. This is the
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well-known post-processing step in a KDD process. To address this problem, different
lines of research have been proposed. Firstly, rules may be filtered out a priori, based on
user-defined templates of rules [19, 20]. Secondly, inference rules or inference systems
have been proposed to reduce the number of rules given to the experts [17, 21, 22, 23].
Thirdly, many quality measures have been developed to select only the most interesting
rules [3, 24] with regard to these measures.

It is worth noting that we have not integrated quality and error measures in this paper.
Error measures like for example confidence defined for association rules or error indi-
cations defined for functional dependencies [25], allow to append approximate rules to
exact rules, i.e. those rules which are almost satisfied. Quality measures like support,
dependency or informative rate [3, 24], allow at contrary to limit the number of rules
and possibly to sort out the obtained rules. These measures are very interesting since
they allow to give to the experts the rules which seem to be the most surprising, the
most interesting with regard to the chosen statistical criteria.

These measures can be generally applied to a wide class of semantics. Nevertheless,
they do not belong to what we believe to be the core definition of a semantics for rules.
Moreover, we do not want to define as much semantics as there are measures. In a data
mining context, error and quality measures can be integrated a posteriori to sort and to
qualify the rules.

6 Conclusion

In this paper, we have pointed out that an equivalence does exist between some syntactic
restrictions on the natural definition of a given semantics and the fact that this semantics
is well-formed, i.e. Armstrong’s axioms are sound and complete for this semantics.
From a practical point of view, this equivalence allows to prove easily whether or not a
given semantics is well-formed. We have also pointed out the relationship between our
generic definition of rule satisfaction and the underlying data mining problem.

For gene expression data, this work brings some foundations to build new well-
formed semantics which best fit into biologists’ requirements. In the context of an on-
going bioinformatics project, a convenient graphical user interface has been developed
to facilitate the discovery process of biologists. We chose to integrate it as a module into
an existing open-source system devoted to microarray data analysis: MeV developed by
The Institute for Genomic Research (TIGR) [26].
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Abstract. Recent advances in data and knowledge engineering have
emphasized the need for formal concept analysis (fca) tools taking into
account structured data. There are a few adaptations of the classical fca

methodology for handling contexts holding on complex data formats, e.g.
graph-based or relational data. In this paper, relational concept analysis
(rca) is proposed, as an adaptation of fca for analyzing objects de-
scribed both by binary and relational attributes. The rca process takes
as input a collection of contexts and of inter-context relations, and yields
a set of lattices, one per context, whose concepts are linked by relations.
Moreover, a way of representing the concepts and relations extracted
with rca is proposed in the framework of a description logic. The rca

process has been implemented within the Galicia platform, offering new
and efficient tools for knowledge and software engineering.

1 Introduction

Formal concept analysis (fca) has been successfully applied to a range of knowl-
edge engineering problems [22,24]. Nevertheless, fca methods and tools aimed
at directly processing data for producing knowledge units represented within
a knowledge representation language –based on description logics (dl) [1] such
as owl dl– are still under study. One key difficulty lies in the presence and
management of relational attributes or links in the data, such as “spouse”, “ref-
erence”, and “part-of”. For example, a target group for a marketing campaign
may be the class of “spouses of Master Gold credit card holders”, that involves
both binary and relational attributes.

Current fca methods and tools have no capabilities for taking into account
relational attributes. This is a rather hard problem to solve, since relational
attributes introduce dependencies and even cycles between the data items. A
standard way for producing dl-like concept descriptions from a formal context
including binary and relational attributes remains to be designed. Accordingly,
one of the objectives of this paper is to present a methodology for taking into
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account relational attributes within fca, leading to what could be called “rela-
tional concept analysis” or rca.

The introduction of relational information, e.g. relational attributes, in the
data formats for fca has been studied for almost a decade now, leading to three
main categories of research lines: (i) the relational attributes remain within the
formal objects [10,11,12], (ii) relational attributes are considered as first-class
citizens and organized into an independent lattice, separated from the standard
concept lattice [14] (just like relation types are represented within the conceptual
graph formalism [18]), (iii) relations between concepts are established indepen-
dently from concept construction, on a manual or semi-automated basis [15].
Although these three approaches successfully deal with relational attributes for
solving a specific task, they are still not general enough and do not allow to
combine and process binary and relational attributes as object descriptors at
the concept formation step. Such a need arises in various practical situations,
for example in model engineering for software development or in ontology learn-
ing from data.

A first introduction of relational concept analysis (rca) has been proposed in
[9]. The data structure on which is based the relational concept analysis process
is called a “relational context family” (rcf): it is composed of a collection of
contexts and inter-context relations, the latter being binary relations between
pairs of object sets lying in two different contexts. The objective is to build
a set of lattices whose concepts are related by relational attributes, similar to
dl roles or to uml associations. In addition, there are needs for associating
restrictions with relational attributes for describing specific characteristics. rca

has been initially motivated by an application on the engineering of uml static
models (see [5]) with an emphasis on expressiveness and algorithmic aspects.
Meanwhile, the need for processing complex data such as relational data has
become an important problem, especially in the field of knowledge discovery in
databases [7], and calls for a formalization of rca.

In this paper, we propose a global and declarative description of the relational
structure within the rca approach, based on a set of lattices resulting from the
processing of the contexts that are successively considered. One feature of the
relational structure is that an object lying in the extent of an rca concept can
be connected with another object lying in the extent of another rca concept,
through a set of relational attributes or links. The inter-concept links can be
nested leading to a relational structure of an arbitrary depth. An auxiliary graph
structure is defined for covering these inter-object links.

Moreover, as experiences with uml model analysis reveal, the complexity of
the final concept descriptions calls for a knowledge representation formalism,
for managing and taking into account the semantics of the inter-concept links,
e.g. classifying links and checking their consistency. In the second part of the
paper, it is shown how concepts and relations from rca can be mapped into a
knowledge base (kb) represented within a dl of the ALE family (more precisely
FL−E). The connection between the structure of the original data mapped into
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the ABox of the kb (set of individuals) and the rca concepts stored in the TBox
of the kb (set of concepts) is also studied.

The paper starts with a recall of basic notions from fca (section 2) and from
dl (section 3). Then, the rca framework is presented in section 4. Section 5
describes the translation of the set of relational concepts into a knowledge base
represented within a knowledge representation language. Finally, related work
and a discussion are proposed in section 6.

Table 1. The formal context Kpapers (in a transposed form for space minimization).
The descriptors of papers are: requirement analysis (ra), architectural design (ad),
detailed design (dd), and software maintenance (sm).
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2 The Basics of FCA

fca is the process of abstracting conceptual descriptions from a set of individuals
described by attributes [8]. Formally, a context K associates a set of objects (O)
to a set of attributes (A) through an incidence relation I ⊆ O × A. An example
of formal context, namely Kpapers, is depicted in table 1, where O is a set of
scientific publications on the applications of fca in software engineering, and A
the set of ISO software engineering activities (this example is adapted from [20]).
Two operators, both denoted by ′, connect the powerset of objects, 2O and the
powerset of attributes 2A as follows:

′ : 2O → 2A, X ′ = {a ∈ A | ∀o ∈ X, oIa}
The operator ′ is dually defined on attributes. The pair of ′ operators induces

a Galois connection between 2O and 2A [3]. The composition operators ′′ are
closure operators and induce two families of closed sets, respectively Co ⊆ 2O and
Ca ⊆ 2A. These two sets, provided with set-inclusion order, form two complete
lattices (anti-isomorphic by ′). A pair (X, Y ) where X ∈ 2O, Y ∈ 2A, X = Y ′,
and Y = X ′, is a (formal) concept, with X as extent and Y as intent. The set CK
of all concepts extracted from K ordered by extent inclusion forms a complete
lattice, LK = 〈CK, ≤K〉, called the concept lattice of the context (or the Galois
lattice of the binary relation I). The lattice of Kpapers associated with the formal
context Kpapers is drawn on the left-hand side of Figure 1.
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Fig. 1. The initial lattice L0
papers

The lattice represents in an exhaustive way the sharing of structures among
objects: two objects are in the extent of a concept iff they share at least one
attribute, meaning, in mathematical terms, that concept extents may be seen
as the intersection of the extents of the attributes from their respective intents.
As it will be shown in section 4, rca relies on a similar principle, extended to
attributes that summarize inter-object links.

Conceptual scaling deals with non-binary data descriptions [8], organized into
a many-valued context K = (O, A, V, J), where J is a ternary relation between
objects in O, attributes in A, and values in V . The scaling replaces a many-valued
attribute with a set of binary attributes, each one representing a value that the
many-valued attribute holds. In rca, as explained farther, scaling is used to
propagate structure sharing along inter-object links. Actually, shared structure
among referred objects, i.e. concepts of the underlying context, is propagated to
the referring objects, where it induces further sharing and hence new concepts.

3 The Basics of Description Logics

Description logics (dl) are formalisms for knowledge representation based on
concepts, roles, and individuals [1]. A concept represents a set of individuals while
a role determines a binary relationship between concepts. Concepts and roles are
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designed according to a syntax and a semantics, as in any logic-based formalism.
The subsumption relation is a partial ordering relation, used for declaring (and
detecting) specialization relations between concepts and roles, and for organiz-
ing concepts and roles within a hierarchy. Instance and concept classification are
basic reasoning mechanisms: the former for finding the concepts an individual
is an instance of, the latter for searching for the most specific subsumers (as-
cendants) and the most general subsumees (descendants) of a concept in the
concept hierarchy.

The representation of concepts and roles in dl and in fca is considered with
different points of view: (i) the fca approach is “inductive” and mainly inter-
ested in building concepts from a formal context (starting from individuals), (ii)
the dl approach is “deductive” and mainly interested in designing concepts and
inferring subsumption and instantiation relations for reasoning purposes (start-
ing from concepts). Accordingly, fca and dl can play complementary roles in
understanding and managing complex data and knowledge units. Attempts for
the integration of both approaches may be found in, e.g. [13,2,17].

From a practical point of view, a kb in dl consists of a set of concept and role
descriptions (respectively comparable to unary and binary predicates in first or-
der logic), that may be primitive or defined (the concept hierarchy is also called
a TBox). “Primitive concepts” are ground descriptions that are used for forming
more complex descriptions, the “defined concepts”, by means of a set of con-
structors, such as conjunction (	), universal value quantification (∀), existential
value quantification (∃), disjunction (�), negation (¬), etc. While a primitive
concept can be considered as an atom of the kb, a defined concept is described
by a set of conceptual expressions –role introductions– that can be regarded as
a set of necessary and sufficient conditions for detecting that an individual is an
instance of the concept, allowing for classification-based reasoning.

The choice of a set of constructors has a direct influence on the complexity
of reasoning, i.e. classification and instantiation (see, e.g. [6]). In the following,
a simple representation language, called FL−E , is considered, based on the con-
structors C 	 D, ∀r.C, ∃r.C, � (the top concept whose extension is the set of all
individuals), ⊥ (the bottom concept whose extension is the empty set), and ≡
for the concept definition (no negation in this language).

For an illustration, consider the paper dataset in Fig. 2. This dataset could be
represented in dl using the primitive concepts AboutDetailedDesign, AboutMain-
tenance, AboutArchitecture, and AboutRequirements, whereas a primitive role cite
could be added to express bibliographic references. In the resulting representa-
tion, the concept of the papers about detailed design citing at least one paper
on maintenance –denoted by ADD– is defined as a conjunction of the primitive
concept AboutDetailedDesign and an existential role restriction on cite:

ADD ≡ AboutDetailedDesign 	 ∃cite.AboutMaintenance

The semantics of the descriptions in a kb is defined by means of an inter-
pretation, i.e. a pair I = (ΔI , .I), where ΔI is a set of individuals called the
interpretation domain, and .I is the interpretation function. The .I function



56 M.H. Rouane et al.

maps a concept description to a subset of ΔI and a role description to a subset
of ΔI ×ΔI . Moreover, each constructor from the language translates into a spe-
cific set-theoretic operation on the interpretations of its argument expressions
(e.g., 	 translates into ∩). For example, the interpretation of the concept ADD
with respect to a domain based on the paper context (in Table 1) and the cite
relation (Fig. 2) is:

{1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25}

The subsumption relationship between concepts is the basis of the main infer-
ential service provided by a dl reasoner: a concept C is subsumed by a concept
D, denoted C � D, iff CI ⊆ DI for every interpretation I. Subsumption is
a pre-ordering relation, that can be considered as a partial ordering up to an
equivalence, two concepts being equivalent as soon as the first subsumes the
second, and reciprocally, i.e. they have the same set of instances.

A concept definition A ≡ C assigns a concept description C to a concept name
A (as in the definition of the ADD concept above). An assertion stores facts about
actual individuals. Assertions are of two kinds, namely concept and role instan-
tiation, e.g. AboutDetailedDesign(12), AboutMaintenance(13), and cite(12,13) are
assertions representing facts in the current example on scientific papers. In this
way, a kb is composed of a TBox T storing concept introductions, and an ABox
A storing assertions about individuals.

It can be noticed that the descriptions of dl concept and the intents of formal
concepts in fca can be both considered as conjunctions of descriptors that act as
predicates on individuals or objects. This observation calls for the introduction
of relation between objects in fca, similar to the relations materialized by roles
between individuals in dl. Accordingly, a mapping could be obtained between
concept descriptions produced by fca and dl-based descriptions, leading to fca

as a method for building an ontology from data [19,4,16]. This is the purpose of
the next section.

4 Relational Concept Analysis

Relational Concept Analysis (rca) is an original approach for extracting formal
concepts from sets of data described by binary and relational attributes. In this
section, the formal background of rca is introduced and detailed.

4.1 Data Model

In rca, data are organized within a structure composed of a set of contexts
K = {Ki} and of a set of binary relations R = {rk}, where rk ⊆ Oi × Oj , Oi

and Oj being sets of objects (respectively in Ki and Kj). The structure (K,R)
is called a relational context family (rcf) and can be compared to a relational
database schema, including both classes of individuals and classes of relations. In
our running example, K = {Kpapers} and R = {cite}. The following definition
introduced in [5] gives a formal account of rcf.
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Definition 1. A relational context family R is a pair (K,R), where K is a set
of contexts Ki = (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi × Oj, where Oi and
Oj are the object sets of the formal contexts Ki and Kj.

A relation rk ⊆ Oi × Oj has a domain and a range, where :

– O = {Oi/Oi ∈ Ki = (Oi, Ai, Ii), Ki ∈ K}
– rk : Oi → 2Oj

– dom : R → O and dom(rk) = Oi

– ran : R → O and ran(r) = Oj ,
– rel : K → 2R and rel(Ki) = {rk|dom(rk) = Oi}.

The instances of a relation rk, say rk(oi, oj), where oi ∈ Oi and oj ∈ Oj ,
are called links. For example, the figure 2 shows the binary table of the cite
relation on the paper example, thus the set of links that are considered in the
following. The links can be “scaled” in order to be included as binary attributes
in a formal original context, through a mechanism called relational scaling and
explained in the following sections.

Contexts, objects, attributes, and relational attributes, are considered to bear
a unique name, within a name space holding for the whole rcf. Contexts are
uniquely determined by their set of objects, that constitute the only component
remaining invariant during the relational analysis process. In the same way,
formal concepts are uniquely determined by their extents, that are invariant
during relational scaling, just as object sets for contexts. The addition of new
attributes in a formal context leads to an expansion of the underlying lattice:
the augmented lattice contains the original lattice as a join-sub-semi-lattice [23].
Moreover, an order embedding of the original lattice into the augmented lattice
may be set on and allows to separate invariant formal concepts, that are lying
in both lattices, and new formal concepts in the augmented lattice, having no
counterpart in the original lattice.

4.2 The Scaling of Relations

Our goal is to consistently introduce abstractions similar to the role restrictions
∀r.C or ∃r.C in dl into fca representation and analysis frameworks. Role re-
strictions provide summaries of object links, e.g. ∀r.C expresses that for all the
objects satisfying the restriction, their “r links” point to instances of C.

The same could be done on formal objects with links, provided that a suitable
set of concepts to use as relational “restrictors” is given beforehand. The most
natural, although not the unique, way of forming such a concept set is to take
the formal concepts over the range context of a relation. In other words, given a
relation r such that dom(r) = Oi and ran(r) = Oj , the target set of concepts will
correspond to a concept lattice1 of the context underlying Oj . For each of the

1 As we shall demonstrate in the following paragraphs, several such lattices will be
composed depending on how much relational information is inserted into the initial
context Kj .
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(1) Fun95 x

(2) God93

(3) God95 x

(4) God98 x x x

(5) Huc99 x

(6) Huc02 x x x

(7) Kro94

(8) Kui00 x x x x x x x

(9) Leb99 x

(10) Lin95 x

(11) Lin97 x x x

(12) Sah97 x x x

(13) Sif97 x x x

(14) Sne96 x x

(15) Sne98C x x x x x x

(16) Sne98R x x x x x x

(17) Sne99 x x x x x x x x x

(18) Sne00S x x x x x x x

(19) Sne00U x x x x x x x

(20) Str99 x x x

(21) Til03S x x

(22) Til03T

(23) Ton99 x x x x

(24) Tone01 x x x x x

(25) Van98 x x x x

Fig. 2. The table of citations between papers of the formal context Kpapers

available concepts c (in the lattice), an attribute will be assigned corresponding
to the type of restriction to be enforced. So far, only universal and existential
restrictions have been defined, although others could equally apply. They have
been designed as separate modes of scaling, called encoding schemes. Thus, the
narrow scheme assigns the attribute corresponding to a pair (r, c) to all the
objects o ∈ Oi whose set of r links, r(o) is strictly included in the extent of c.
By contrast, the wide scheme only requires that the two sets have a non-empty
intersection. In the following, c refers to a concept in the lattice while C refers
to a dl concept.

In mathematical terms, given Ki = (Oi, Ai, Ii), the scaling of Ki for a relation
r ∈ rel(Ki) such that ran(r) = Oj with respect to the lattice Lj yields an
extension of Ai and Ii, but keeps Oi unchanged. The attributes added to Ai are
of the form r : c, as made precise in the definition below:
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Definition 2. Given a relation r ∈ rel(Ki) and a lattice Lj on Kj with Oj =
ran(r), the narrow scaling operator sc

(r,Lj)
× : K → K is defined as follows:

sc
(r,Lj)
× (Ki) = (O(r,Lj)

i , A
(r,Lj)
i , I

(r,Lj)
i )

where O
(r,Lj)
i = Oi, A

(r,Lj)
i = Ai ∪ {r : c|c ∈ Lj}, and

I
(r,Lj)
i = Ii ∪ {(o, r : c)|o ∈ Oi, c ∈ Lj , r(o) �= ∅, r(o) ⊆ extent(c)}

The wide scaling operator sc
(r,Lj)
+ is defined in a similar way, the only difference

lying in the incidence relation for sc
(r,Lj)
+ (Ki):

Ii ∪ {(o, r : c)|o ∈ Oi, c ∈ Lj , r(o) ∩ extent(c) �= ∅}

For example, suppose that the context Kpapers has to be scaled on the cite
relation with respect to the lattice given in Fig. 1. In this lattice, the concept
denoted by 0 groups all papers on both detailed design and maintenance (at-
tributes dd and sm). The extent of 0 actually comprises all papers but 21 and
22. In the scaled context, all objects from the Kpapers context citing at least
one paper from 0 will be assigned the attribute cite : 0 (equivalent to the dl

expression ∃cite.C0, where C0 represents the concept 0 in the lattice). Besides,
in the final lattice, shown in Fig. 3, these papers constitute the extent of the
concept denoted by 8.

The complete relational scaling of a context Ki is the scaling of all the relations
in rel(Ki). Considering a context Ki, the relation set rel(Ki) = {rl}l=1..pi , and
Ljl

the lattice associated to the context of the range object set for rl for each l
in [1, pi], the result of the scaling of Ki on all pairs (rl, Ljl

) is denoted by:

Krel
i = sc

(r1,Lj1 )
× (sc(r2,Lj2 )

× (. . . sc
(rki

,Ljpi
)

× (Ki)))

Thus, when all the contexts of a rcf are scaled for lattice construction, a
scaled version of a context Kj may possibly be no longer consistent with a
prior scaling sc

(r,Lj)
× . When there is no loop within relations in the whole rcf,

the inconsistent situation may be avoided by properly ordering contexts and
the associated lattice construction tasks. A general method for constructing the
lattices of a rcf is presented below.

4.3 Lattice Construction

The building of a lattice associated with a rcf is an iterative process that alter-
nates pure lattice construction and expansion of the contexts through relational
scaling. Let us consider a relational context family R = (K,R), where K and R
are finite, i.e. the number of contexts and the number of relations are finite. The
process starts with a preliminary lattice construction for each context, exclusively
focusing on the available binary attributes and omitting relations. This first con-
struction provides the necessary basis for relational scaling that is applied on every
relation of the rcf at the next iteration. Then, a new step of lattice construction
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is carried on, followed by a new scaling step, and so on. The construction process
ends whenever a lattice construction does not introduce any new concept on the
entire set of lattices. This means that a fixed point for the rcf scaling operator has
been met, the computation ends up and the process terminates.

More formally, the evolution of the content of each context Ki is captured in
a series of context contents Kp

i . The initial element is the input context K0
i =

(Oi, A
0
i , I

0
i ). Each member of the series is obtained from the previous one by

complete relational scaling: Kp+1
i = (Kp

i )relp , where the .relp operator denotes
the fact that the scaling is computed with respect to the context contents at
the step p of the process. Finally, K∞

i is the fixed point of the series which is
a context whose size is “non-decreasing”. Indeed, during the scaling, the size of
concept set of a context cannot decrease as the introduction of new (relational)
attributes may only augment or leave unchanged that concept set.

Furthermore, to express the global evolution of the context set, a composite
operator is defined for Kn, that is considered as a vector of contexts. The op-
erator, denoted .rel∗p , denotes the application of .relp to all contexts in K. Here
again, a series Kn can be defined by K0 = K, Kp+1 = (Kp)rel∗p for all p ≥ 0.
The resulting series has an upper bound since all component series are upper
bounded. The series is non-decreasing as well, and thus has a limit. This limit,
denoted by K∞, is the element where scaling produces no more concepts in any
of the contexts. In the paper example, the final lattice L∞

papers is given in Fig. 3.
It can be noticed that the intents of the concepts on this figure have been

simplified in the sense that, given a concept c, the presence in the intent of c
of two relational attributes cite : c1 andcite : c2 such that c2 ≤ c1 makes the
expression cite : c1 redundant and implies its removal. Accordingly, while all the
objects of the concept 13 satisfy cite : 9, this last attribute is no longer in the
intent of 13: cite : 9 does not bring any additional knowledge w.r.t. cite : 13 that
is already in the intent of intent of 13.

From a pure computational standpoint, the fixed point is reached whenever at
two subsequent steps all pairs of the corresponding lattices remain isomorphic.

5 Mapping the RCA Constructs to a DL KB

rca provides relational descriptions that can be fully exploited by means of a
representation formalism supporting reasoning, i.e. classification, instance and
consistency checking. As argued above, the dl family is a natural choice for
a formalism such as rca. More specifically, we need constructors for the con-
junction of the concepts (concept intents are basically conjunctions), universal
role quantification (or value restriction, ∀r.C), and existential role quantification
(∃r.C) The closest description language is therefore FL−E (actually a subset of
ALE). Furthermore, an appropriate translation mechanism is necessary to en-
sure that the semantics of the expressions output by rca, i.e. concept intents, is
preserved. Thus, we assume a bijective mapping α that associates a dl construct
to each rcf entity. The individual translation rules supporting the mapping are
described below.
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Fig. 3. Left: The final relational lattice L∞
papers. Right: The corresponding TBox.

A knowledge base KB in FL−E is a pair (T (TC , TR), A). A knowledge base
can be designed on top of a rcf R and the corresponding set of final lattices
L = {Li} in the following way. First, the TBox (T (TC , TR) hosts the translations
of the symbols for context, attribute, relation (relational attribute), and concept
names from R and L. The respective rules are presented in Table 2:
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Table 2. Construction of the TBox

Source rca entity Notation Target dl element Rule

context K ∈ K primitive concept α[K] ∈ TC

atomic attribute a ∈ Ai primitive concept α[a] ∈ TC

relation r ∈ R primitive role α[r] ∈ TR

relational (r : c) ∈ A∞
i value restriction ∀α[r].α[c] ∈ T

attribute (narrow)

relational (r : c) ∈ A∞
i existential role ∃α[r].α[c] ∈ T

attribute (wide) quantification

concept c ∈ L∞
i , defined concept α[c] ∈ definitions(T )

c �= �L∞
i

concept definition (α[c] ≡ �aj∈int(c)α[aj ]) ∈ T
inclusion axiom (α[c] 	 α[Ki]) ∈ T

sub-concept c1 ≤L∞
i

c2 inclusion axiom (α[c1] 	 α[c2]) ∈ T
link

This means that contexts and attributes become primitive concepts in TC ,
while relations (relational attributes) become roles in TR. Similarly, all formal
concepts in L∞

i but the top concept become defined concepts in T whereby
the underlying definitions reflect the composition of formal concept intents. In
particular, relational attributes generate role restrictions that appear in the defi-
nitions. Finally, all the inclusions (�) are stated: on the one hand, all sub-concept
links in the final lattices are translated into inclusions between defined concepts
in T , while, on the other hand, all formal concept images are stated as being
included in the image of the corresponding contexts.

Based on the above translation, the actual content of the knowledge base, i.e.
the set of ground facts in the A ABox is created. This involves the translation of
objects which become individuals (constants) in A. Basic facts translated into
instantiations for primitive concepts include the incidence between objects and
contexts, and the initial incidence facts from I0

i . Relational links among objects
become instances of roles, i.e. pairs of individuals. The result of the analysis, i.e.
all concept extents, are translated into instantiations of defined concepts. The
respective rules are listed in Table 3.

The connection between the data part in A and the schema part in T can
be made explicit. In this way, the interpretation domain ΔI is identified with
the ABox A, meaning that concept descriptions are interpreted in terms of in-
dividuals in the ABox, and role descriptions in terms of pairs of individuals.
Moreover, the formal concept extents in L∞

i have been explicitly translated into
facts of the ABox. A question remains whether all relations in the data have
been expressed in the FL−E knowledge base (T , A). The answer is that under
some very reasonable hypotheses, the set of all possible semantics, i.e. the actual
object sets that can be described by a formula of FL−E using only concept and
role names in T (TC , TR), are already in the TBox T constructed in the above
fashion.
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Table 3. Construction of the ABox

Source rca entity Notation Target dl element Rule

objects o ∈ Oi individual α[o] ∈ individuals(A)
primitive concept α[Ki](α[o]) ∈ A
instantiation

object-to-attribute (o, a) ∈ I0
j primitive concept α[a](α[o]) ∈ A

incidence instantiation

relational link r(o1, o2), ri ∈ R role instance α[r](α[o1], α[o2]) ∈ A
object-to-concept c ∈ L∞

i , o ∈ ext(c) defined concept α[c](α[o]) ∈ A
incidence instantiation

This can be stated in the following property. Given an arbitrary description
D in FL−E , with T (TC , TR), there exists a concept C in T (TC , TR) such that
D and C are semantically equivalent for the model provided by the ABox, i.e.
DA ≡ CA.

6 Conclusion

Several research works hold on the extension of the classical binary context model
of fca to the handling of more complex contexts including relational descrip-
tions, while preserving the closure properties of formal concepts. For example,
in the approach based on power context families in [14], inter-object links are
processed as high-order objects and formal concepts are composed these links.
This approach offers a uniform way of processing n-ary links between objects,
without giving details on the way of representing the concepts in the framework
of a knowledge representation language.

Graph-based descriptions are considered in [10,11,12]. These papers propose
efficient extensions of the fca machinery to complex data formats described
as graphs, e.g. chemical compound models, conceptual graphs, rdf triples. As
above, the resulting methods are not intended to provide dl concept descriptions
by means of fca, contrasting the objectives of the present approach.

In this paper, we have proposed “relational concept analysis”, an extension of
fca for the representation and manipulation of relational data. Concepts and re-
lations extracted with rca techniques can then be represented in the framework
of description logics, allowing reasoning and problem-solving. The rca approach
has been implemented in the Galicia platform2 [21], and is operational for small
datasets. Indeed, scalability is still an open issue, since the size of lattices grows
rapidly w.r.t. the growth of relations between contexts. Various techniques for
preventing combinatorial explosion can be used, e.g. iceberg lattices or Galois
sub-hierarchies. Algorithmic issues are one of the current primary concern: fur-
ther efficient progress can be realized based on a technique for iterative lattice

2 http://sourceforge.net/projects/galicia/
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design and maintenance (replacing design from scratch). Moreover, a challenging
research track includes as well the coupling of Galicia with a dl reasoner for
knowledge representation and problem-solving purposes, and for ontology and
software engineering.
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(KRDB’99), Linköping Sweden, 1999.

14. S. Prediger and R. Wille. The lattice of concept graphs of a relationally scaled
context. In W.M. Tepfenhart and W.R. Cyre, editors, Proceedings of the 7th In-
ternational Conference on Conceptual Structures (ICCS’99), Blacksburg, Virginia,
pages 401–414, Berlin, 1999. LNCS 1640, Springer.

15. U. Priss. Relational Concept Analysis: Semantic Structures in Dictionaries and
Lexical Databases. PhD thesis, Aachen University, 1996.

16. T.T. Quan, S.C. Hui, A.C.M. Fong, and T.H. Cao. Automatic generation of on-
tology for scholarly semantic web. In S.A. McIlraith, D. Plexousakis, and F. Van
Harmelen, editors, International Conference on Semantic Web, ISWC 2004, Hi-
roshima, Japan, pages 726–740, Berlin, 2004. LNCS 3298, Springer.

17. S. Rudolph. Exploring relational structures via fle. In K.E. Wolff, H.D. Pfeiffer,
and H.S. Delugach, editors, Conceptual Structures at Work: 12th International
Conference on Conceptual Structures Proceedings (ICCS 2004), Huntsville, AL,
pages 261–286. LNCS 3127, Springer, Berlin, 2004.

18. J.F. Sowa, editor. Principles of Semantic Networks: Explorations in the Represen-
tation of Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo, California,
1991.

19. G. Stumme and A. Maedche. FCA-MERGE: Bottom-up merging of ontologies. In
Proceedings of IJCAI’01, Seattle (WA), pages 225–234, 2001.

20. T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept analy-
sis support for software engineering activities. In Proceedings of the First Inter-
national Conference on Formal Concept Analysis, Darmstadt, Germany, Berlin,
2003. Springer Verlag.

21. P. Valtchev, D. Grosser, C. Roume, and M.H. Rouane. Galicia: an open platform
for lattices. In A. de Moor, W. Lex, and B. Ganter, editors, Contributions to
the 11th International Conference on Conceptual Structures (ICCS’03), Dresden,
Germany, pages 241–254. Shaker Verlag, 2003.

22. P. Valtchev, R. Missaoui, and R. Godin. Formal concept analysis for knowledge
discovery and data mining: The new challenges. In P.W. Eklund, editor, Concept
Lattices, Second International Conference on Formal Concept Analysis (ICFCA
2004), Sydney, Australia, pages 352–371, Berlin, 2004. LNCS 2961, Springer.

23. P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards
constructing galois (concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

24. R. Wille. Knowledge acquisition by methods of formal concept analysis. In Proceed-
ings of the conference on Data analysis, learning symbolic and numeric knowledge,
pages 365–380. Nova Science Publishers, Inc., 1989.



Computing Intensions of Digital Library

Collections

Carlo Meghini1 and Nicolas Spyratos2

1 Consiglio Nazionale delle Ricerche, Istituto della Scienza e delle Tecnologie della
Informazione, Pisa, Italy
meghini@isti.cnr.it
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Abstract. We model a Digital Library as a formal context in which
objects are documents and attributes are terms describing documents
contents. A formal concept is very close to the notion of a collection:
the concept extent is the extension of the collection; the concept intent
consists of a set of terms, the collection intension. The collection intension
can be viewed as a simple conjunctive query which evaluates precisely
to the extension. However, for certain collections no concept may exist,
in which case the concept that best approximates the extension must be
used. In so doing, we may end up with a too imprecise concept, in case
too many documents denoted by the intension are outside the extension.
We then look for a more precise intension by exploring 3 different query
languages: conjunctive queries with negation; disjunctions of negation-
free conjunctive queries; and disjunctions of conjunctive queries with
negation. We show that a precise description can always be found in one
of these languages for any set of documents. However, when disjunction
is introduced, uniqueness of the solution is lost. In order to deal with
this problem, we define a preferential criterion on queries, based on the
conciseness of their expression. We then show that minimal queries are
hard to find in the last 2 of the three languages above.

1 Introduction

In a Digital Library (DL for short), collections [14,16,1] are sets of documents de-
fined to facilitate the tasks of various DL actors, ranging from content providers
for whom physical collections are provided, to users, for whom logical collections
are provided. The latter kind of collections typically helps the user in carrying
out information access. For discovery, the user requires a “place” where to accu-
mulate the discovered documents, similar to the shopping cart of an e-commerce
Web site. This concept is commonly known as static collection [20,2]. Static col-
lections are also useful in other tasks, such as cooperative work, where they play
the role of a shared information space within a community. A classical example
of static collection is the book-mark (or favorites) of a Web browser. Users may
also associate a description of their “view” of the DL to a collection, and access
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the collection whenever they need to explore this view. This concept is com-
monly captured by so-called dynamic collections [4,5,3]. Dynamic collections are
not the only way users have in order to know at once the changes in the DL that
may be of interest to them. Publish/subscribe (pub-sub for short) mechanisms
are another way of achieving the same goal, but with a different modality: while
in dynamic collection users are active, in the sense that they act by accessing
collections, in pub-sub users are passive, in the sense that the system intercepts
changes in the DL which may be of interest for users, and notifies them. This
distinction is also known as pull vs. push access mode.

We argue that the notions of static and dynamic collections are two sides
of the same coin, and propose a general notion of collection, which generalizes
both. According to this notion, collections have an extension and an intension,
very much like classes in object models or predicates in predicate logics. We then
solve a basic problem, arising upon collection creation: the determination of the
intension of a collection based on a given extension.

The paper is organized as follows: Sections 2 to 5 introduce our model of a
DL, illustrating the most relevant concepts. Section 6 states in precise terms the
problem we address. Sections 7 to 10 present different solutions to the problem,
by examining different description languages for expressing collection intensions.

2 Terms

The basic ingredient of descriptions are terms. A term denotes a set of docu-
ments. As such, it may be a keyword describing the content of documents (such
as nuclear waste disposal or database), or their type (image); or may be thought
of as an attribute value (for instance, creator=“CM”). For generality, we do not
impose any syntax on terms and treat them just as symbols making up a finite,
non-empty set T, which is a proper subset of a countable domain T , T ⊂ T ,
always containing the special term true, standing for truth.

Terms are arranged in a taxonomy, that is a binary relation ≤T on T, reflexive
and transitive, having true as the greatest element, that is

∀t ∈ T, t ≤ true and true ≤ t implies t = true.

Based on ≤T, we define ≡T as follows: for any two terms t1, t2 ∈ T,

t1 ≡T t2 if and only if t1 ≤ t2 and t2 ≤ t1.

It is easy to see that≡T is an equivalence relation. Let Te be the set of equivalence
classes induced by ≡T, i.e.

Te = { [t] | t ∈ T}.

Clearly, [true] = {true}. Furthermore, let us extend ≤T to Te as follows:

[t1] ≤T [t2] iff t1 ≤T t2.
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(Te,≤T) is now a partial order, in which equivalent terms have been collapsed
into the same equivalence class, having as greatest element [true]. To simplify
notation, we will consider these equivalence classes as terms, therefore using the
symbol T in place of Te, and understand ≤T as a partial order.

For any two terms t1, t2 ∈ T, if t1 ≤ t2 we say that t1 is a specialization (or
sub-term) of t2, or that t2 is a generalization (or super-term) of t1.

3 The Description Directory

Description are used to annotate the documents of a digital library, which for the
present purposes we just represent as a finite, non-empty subset D. The relation
between documents and terms is stored in the description directory, which is a
relation r from documents to terms, r ⊆ D× T, such that (d, t) ∈ r means that
d is described (or indexed) by term t. We impose on r two requirements:

– it must be total, that is dom(r) = D. This is not a serious limitation for the
users, because if no term qualifies as a satisfactory descriptor of a document,
the term true can, and indeed should, be used;

– a document cannot be indexed by ≤-related terms:

∀d ∈ D, t1, t2 ∈ r(d) implies t1 ‖ t2. (1)

This second constraint requires to select independent terms when indexing
a document, which we think is not a serious limitation. The constraint also
interacts with the previous one by imposing that if true is used for describing
a document, then no other term can be used to describe that document,
which is consistent with the usage of true postulated above.

From r we define two functions which will turn out very useful in the sequel:

– the index, a function index : D→ P(T), giving the terms which a document
is indexed by: ∀d ∈ D, index(d) = {t ∈ T | (d, t) ∈ r}.

– the extension, a function termext : T→ P(D), giving the documents which
a term describes: ∀t ∈ T, termext(t) = {d ∈ D | (d, t) ∈ r}

Constraint (1) just says that index(d) consists of incomparable terms, for all
documents d ∈ D.

4 General Descriptions

In general, a description is a propositional formula over the alphabet T, built
out of the connectives ¬ (negation), ∧ (conjunction) and ∨ (disjunction). We
will denote the set of such formulas as LT , or simply L when there is no danger
of ambiguity.

Descriptions denote sets of documents. This is captured by the function ans,
named after the fact that a typical usage of descriptions is for querying a DL.
ans is inductively defined as follows, where t, t′ ∈ T and q, q1, q2 ∈ L :
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ans(t) =
⋃
{termext(t′) | t′ ≤ t}

ans(true) = D

ans(¬q) = D \ ans(q)
ans(q1 ∧ q2) = ans(q1) ∩ ans(q2)
ans(q1 ∨ q2) = ans(q1) ∪ ans(q2)

In the course of our study, we will need to consider several sub-languages of
L, corresponding to different types of descriptions. The simplest descriptions
are conjunctions of incomparable terms. We will call these descriptions simple
queries, and denote their set as LS . In fact, document descriptions can be re-
garded as simple queries given by the conjunction of the terms which describe
the document. That is, assuming that the description of a document d is given by
index(d) = {t1, t2, . . . , tn} and recalling that (1) sanctions the incomparability
of the terms t1, t2, . . . , tn, we may, and in fact will assume that:

index(d) = (t1 ∧ t2 ∧ . . . ∧ tn) ∈ LS

Other important classes of descriptions will be introduced in due course.

5 Collections

A collection is a set of documents that make up a significant whole from an
application point of view. We model collections as objects belonging to a finite,
non-empty set C. The membership of documents into collections is stored in
the classification directory, which is a relation e from documents to collections,
e ⊆ D × C, such that (d, c) ∈ e means that d is a member of (or belongs to)
collection c. In a DL it is usually required that every document belongs to at
least one collection: dom(e) = D.

In order to best serve its purposes, a collection must have both an extension
and an intension, very much like predicates in predicate logics. The extension
of a collection is the set of objects that are members of the collection at a given
point in time. It can then be defined as the total function collext : C → P(D)
given by: ∀c ∈ C, collext(c) = {d ∈ D | (d, c) ∈ e}. The intension of a collection
is a description of the meaning of the collection, that is the peculiar property
that the members of the collection collectively possess and that distinguishes the
collection from other collections. This should not be confused with the so-called
collection metadata (such as the owner or the creation date of the collection),
which represent properties of collections required for administration purposes.
Formally, the intension of a collection is a description, and is associated to its
collection by the total function collint : C → L. The question arises how these
two notions should be related. An obvious requirement is that the set of docu-
ments belonging to the collection must agree with the collection intension. This
can be expressed by requiring that the collection intension, when used as a query,
should retrieve at least the documents in the collection extension. Formally:

∀c ∈ C, collext(c) ⊆ ans(collint(c)). (2)



70 C. Meghini and N. Spyratos

As a consequence of this last requirement, we obtain two very useful properties
of collections, namely: for any given query q ∈ L and collection c ∈ C : (1) if
collint(c) ∧ q is unsatisfiable, then no document in (the extension of) c satisfies
the query, that is: ans(q) ∩ collext(c) = ∅. (2) if collint(c) subsumes q, then all
documents in (the extension of) c satisfy the query, that is: collext(c) ⊆ ans(q).

For a given collection c ∈ C, we define the precision of the collection intension,
prec(c), the set of documents denoted by collint(c) which are not members of
the collection:

prec(c) = ans(collint(c)) \ collext(c)

If prec(c) = ∅ we say that the collection is precise, and imprecise otherwise.
Clearly, a collection is precise if and only if collext(c) = ans(collint(c)). More
generally, we say that a description α is precise with respect to a set of documents
X just in case X = ans(α).

6 The Problem

The problem we want to address in this study is the following: given a DL and
a subset X of the documents in it, to find a description α ∈ L such that X ⊆
ans(α). This problem typically arises when a user has a set of documents and
wants to create a collection having those documents as extension. The documents
in question may have been gathered by the user through one or more discoveries,
or may have been brought to the user attention by an expert, or may have been
notified to him by the system as the result of the user registration to a publish-
subscribe mechanism. These are just a few scenarios, in all of which the user
likes the documents he has and wants to persist their set in the DL by creating
a collection which holds them. To this end, an intension must be defined which
satisfies the constraint (2), whence the problem.

Let us define as conjunctive queries the descriptions of the form:
∧

1≤j≤n

lj (n ≥ 1)

where each lj is a literal, that is is either a term t ∈ T, in which case it is called
a positive literal, or its negation ¬t (negative literal), such that:

– a term and its negation do not occur: for no different indexes i, j ∈ [1, n],
li = t and lj = ¬t, for some t ∈ T.

– literals are pairwise incomparable: two literals are incomparable if they are
either both positive or both negative, and the terms occurring in them are
incomparable. Let LC be the set of conjunctive queries.

A typical conjunctive query is the description of a document d ∈ D, δ(d), given
by the conjunction of the terms describing the document with the negation of
the terms not describing the document:

δ(d) =
∧
{t | t ∈ index(d)} ∧

∧
{¬t′ | t′ �∈ index(d)}
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It is easy to see that δ(d) is more specific (i.e., it is subsumed by) the index
of d, index(d); moreover, {d} ⊆ ans(δ(d)) and a document d′ ∈ ans(δ(d)) just
in case d′ has exactly the same index as d, that is index(d) = index(d′). We
assume this is not the case, i.e. all document indexes are different. This is not
a serious limitation, since documents with the same index can be treated as a
class, of which only one representative is considered.

Now DNFS queries are descriptions of the form:
∨

1≤i≤m

Di (m ≥ 1)

where each Di is called a disjunct and is a conjunctive query. DNFS queries
make up the language LD.

Evidently, any set of documents X has a trivial description in LD, given by:
∨
{δ(d) | d ∈ X}

which is as precise as a description of X can be in the DL. However, this descrip-
tion is not very interesting: apart from being as large as X itself, it just replicates
the index of every document in X, offering no additional information. A more
satisfactory formulation of our problem is therefore: given a set of documents X,
can we find a description of X which is better than the trivial one?

7 An Easy Solution: Formal Concepts

A simple query would certainly be a better description for X than the trivial one.
Simple queries have a minimal logical structure (no negation, no disjunction) and
therefore convey their meaning in a simple and intuitive way. So we reduce our
problem to the following ones:

1. does X have a description in LS?
2. how precise can it be?

An answer to both questions comes from Formal Concept Analysis (FCA)
[11,10,12]. The formal context of a DL is the triple K = (D, T, x), where:

(d, t) ∈ x iff ∃t′ ≤ t : (d, t′) ∈ r

The relation x, called the incidence of the context, extends r by taking into
account the term taxonomy according to its intuitive meaning: it assigns a term
t to a document d just in case d is described by a term t′ that is more specific
than t. Since t is more specific than itself (i.e., ≤ is reflexive) we have that r ⊆ x.
In particular, r = x if no term is a sub-term of another term.

As an example, let us consider the DL whose formal context is shown in
Figure 1 left in tabular form. In this DL, term D is a sub-term of C and in fact
any document described by D is also described by C, and all documents are
described by true.
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A B C D E F true

1 x x x x x
2 x x x
3 x x x x x
4 x x x x x x
5 x x x x x

Fig. 1. A Formal Context

A formal concept in K is a pair (D, T ), where: (1) D, the extent of the concept,
is a set of documents: D ⊆ D; (2) T, the intent of the concept, is a set of terms:
T ⊆ T; and (3) T are the terms describing all documents in D and, vice-versa, D
are all the documents described by the terms in T. Formally, (D, T ) is a concept
if and only if D = ψ(T ) and T = ϕ(D), where

ψ(T ) =
⋂
{ε(t) | t ∈ T } for all T ⊆ T

ϕ(D) =
⋂
{ι(d) | d ∈ D} for all D ⊆ D

ε(t) = {d ∈ D | (d, t) ∈ x} for all t ∈ T

ι(d) = {t ∈ T | (d, t) ∈ x} for all d ∈ D

In the formal context shown in Figure 1, ({1, 3, 4}, {C, D, true}) is a concept,
while ({1, 3}, {A, D}) is not.

Lemma 1. For all sets of terms Y ⊆ T, ψ(Y ) = ans(
∧

Y ).

Since in a concept (D, T ), we have that D = ψ(T ), the previous Lemma tells us
that D = ans(

∧
T ), that is the extent of a concept is the answer to the intent

of the concept, seen as a conjunction of terms.

7.1 Solving the Problem for LS

It should be evident that a formal concept strongly is a precise collection: the
concept extent mirrors the extension of the collection; the concept intent consists
of a set of terms, which can be viewed as a simple query which evaluates precisely
to the extent. However, for our purposes concept intents tend to be redundant.
For instance, given the concept ({4, 5}, {B, E, F, true}), there are simpler queries
than (B ∧E ∧ F ∧ true) which return {4, 5}, for instance (B ∧E), (B ∧ F ) and
(E∧F ). Part of the problem is that true is the most general term, thus decidedly
useless in queries other than true itself. However the problem is more general
since none of B, E and F is ≤-comparable with the others, yet one of the 3 is
clearly redundant.

A term t ∈ T is redundant in a set of terms T ⊆ T, iff for all documents
outside ans(T ), d ∈ D \ ans(T ), whenever t does not describe d, (d, t) �∈ x, then
there exists another term t′ in T, such that t′ does not describe d, (d, t′) �∈ x.
Now it is very simple to check that t is redundant in T iff ans(T ) = ans(T \{t}).
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That is, a term is redundant in a set if it can be removed without altering the
denotation of that set. Given a set of terms T, a simplification function σ is
any function that iterates through the elements of T removing the ones that are
found redundant. Notice that if t ≤ t′ then t′ is redundant whenever it co-occurs
with t, so by eliminating redundant terms we implicitly eliminate comparable
terms. The order in which non-comparable, redundant terms are considered is
very important to determine the result. Indeed, the one of the terms B, E, F
which is considered first is always redundant, while the remaining 2 are not.
So, σ({B, E, F, true}) may be anyone of {E, F}, {B, F}, or {B, E}. This is not
relevant for our study, so we will leave it unspecified.

Proposition 1. A set of documents X ⊆ D has a unique precise description in
LS if and only if X is the extent of a concept in K.

Proof: (←) Suppose (X, Y ) is a concept in K. By definition, X = ψ(Y ) and by
the previous Lemma X = ans(

∧
Y ). Now (

∧
Y ) may not be in LS since some

terms in Y may not be incomparable. Now σ(Y ) consists of incomparable terms
and X = ans(

∧
σ(Y )) therefore (

∧
σ(Y )) is an LS precise description for X.

Since no two concepts can have the same extent, (
∧

σ(Y )) is also unique.
(→) We must prove that (X, Y ) is a concept in K for some set of terms Y ⊆ T.
Since X has a precise description in LS , there exists a set of incomparable terms
T ⊆ T, such that X = ans(

∧
T ). Let Y =

⋂{ι(d) | d ∈ X}. By construction,
Y = ϕ(X) therefore it remains to be proved that X = ψ(Y ). By the previous
Lemma, this is the same as proving that X = ans(Y ). We do this in 2 steps.
(1) ans(Y ) ⊆ X. By construction, T ⊆ Y, hence ψ(Y ) ⊆ ψ(T ). By applying
twice the Lemma, we have ψ(Y ) = ans(Y ) and ψ(T ) = ans(T ) = X, and
therefore we have ans(Y ) ⊆ X. (2) X ⊆ ans(Y ). Now, by construction, for all
x ∈ X and y ∈ Y, (x, y) ∈ x, hence x ∈ ε(y) hence x ∈ ⋂{ε(y) | y ∈ Y } hence
x ∈ ψ(Y ) = ans(Y ). Then X ⊆ ans(Y ). �

Now, coupled with the well-known result of FCA that, for all set of documents
X ⊆ D, (ψ(ϕ(X)), ϕ(X)) is the concept with the smallest extent containing X,
this Proposition allows us to answer the questions posed at the beginning of this
Section, as follows: all sets X of documents have a description in LS , which we
call the simple description of X and denote as δS(X), given by:

δS(X) = σ(ϕ(X)).

The precision of δS(X) is given by:

ψ(ϕ(X)) \X

The most precise LS description for {1, 2} is therefore σ({C, true}) = {C},
whose precision is {3, 4}.

In some cases, the precision may be too large a set for the user, who might
therefore be looking for a more precise description. To this end, one of two routes
may be followed: the extension relaxation route, in which the user gives up some
of the documents in X, or the intension relaxation route, in which the user
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A B C D E F true ¬A ¬B ¬C ¬D ¬E ¬F f alse

1 x x x x x x x
2 x x x x x x x
3 x x x x x x x
4 x x x x x x x
5 x x x x x x x

Fig. 2. The augmentation of a formal context

accepts a more complex description than a simple query. We have investigated
the former route in [17], so we now concentrate on the latter.

The description language can be made more expressive than LS in two dif-
ferent ways: by adding negation of single terms, in which case we end in LC , or
by adding disjunction, in which case we end into a subset of LD, consisting of
disjunctions of simple queries. We will consider each of these two languages in
the sequel.

8 Conjunctive Queries

FCA can be very useful also if we admit negation in descriptions. In order to see
how, we extend the notion of context to include negated terms. These have been
already informally introduced in Section 6. We now give them a more precise
mathematical status.

Let ¬ be a bijection from T to T¬, a subset of T disjoint from T. For simplicity,
we will write ¬t in place of ¬(t) to indicate the negation of any attribute t ∈ T.
For clarity, we will denote as f alse the term ¬true. If T ⊆ T is a set of terms,
¬(T ) is the set of the negation of each term in T, i.e. ¬(T ) = {¬t | t ∈ T }.

The augmented formal context of a DL is the triple K¬ = (D, T ∪ T¬, x¬),
where:

x¬ = x ∪ {(d,¬t) | (d, t) �∈ x}.
In practice, the augmentation of a formal context introduces negated terms,
whose extensions are the complement of the extensions of the corresponding
non-negated terms. We will use ¬ as a subscript to indicate that we refer to the
augmented context, e.g.ϕ¬ is the correspondent of ϕ in the augmented context.

The augmentation of the formal context shown in Figure 1 is given in Figure 2.
It can be easily seen that augmentation induces a total, one-to-one homomor-
phism from the concepts of a context to those of the augmentation. In general
this is not an isomorphism, as the augmentation may have more concepts. In
addition, concept intents may be larger in the augmented context, as they may
include negated terms. So in moving from a context to its augmentation we are
able to describe more sets of documents. Now, by equating intents of augmented
concepts with conjunctive queries, we can state the following Proposition.

Proposition 2. A set of documents X ⊆ D has a precise description in LC if
and only if X is the extent of a concept in K¬.
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The proof of this proposition is identical to that of Proposition 1. The most
precise LC description for a given set of documents X, δC(X) is therefore

δC(X) = σ(ϕ¬(X))

and its precision is given by:

ψ¬(ϕ¬(X)) \X. (3)

Let us find the most precise LC description for the set {1, 2} in our running
example. We recall that the most precise LS description for {1, 2} is {C}, whose
precision is {3, 4}. Now it turns out that this set has a precise LC description,
since ψ¬(ϕ¬({1, 2})) = ψ¬({C, true,¬F}) = {1, 2}. The sought description is
given by σ(ϕ¬({1, 2})) = σ({C, true,¬F}) = {¬F}.

We conclude by observing that the set (3) can be computed without computing
the augmented context, of course. In fact, it can be verified that, for all sets of
terms T and sets of documents D :

ψ(T ) = {d ∈ D | (d, t) ∈ x for all t ∈ T and (d, t) �∈ x for all ¬t ∈ T }
ϕ(D) = {t ∈ T | (d, t) ∈ x for all d ∈ D} ∪ {¬t | (d, t) �∈ x for all d ∈ D}

9 Introducing Disjunction

Let LU be the sub-language of L consisting of disjunctions of simple queries,
which we call disjunctive queries for brevity.

Disjunctive queries can describe many more sets of documents, since disjunc-
tion allows to “accumulate” simple queries at will. So, the first question that
naturally arises is whether all sets of documents have a precise description in LU .
The answer, perhaps surprisingly, is “no,” as the following Proposition shows.
Let Ce and Ci denote the extent and the intent of concept C, respectively.

Proposition 3. A set of documents X ⊆ D has a precise description in LU if
and only if γ(d)e ⊆ X for all d ∈ X.

Proof: (→) Let β be the query

β =
∨
{
∧

σ(γ(d)i) | d ∈ X}
By definition of ans, we have that:

ans(β) =
⋃
{ans(

∧
σ(γ(d)i)) | d ∈ X}.

By definition of σ, ans(
∧

Y ) = ans(
∧

σ(Y )), for all sets of documentsY, therefore:

ans(β) =
⋃
{ans(

∧
γ(d)i) | d ∈ X}.

From Lemma 1 we have that γ(d)e = ans(
∧

γ(d)i), therefore

ans(β) =
⋃
{γ(d)e | d ∈ X}
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By the hypothesis it follows that ans(β) ⊆ X. By construction, d ∈ γ(d)e, hence
X ⊆ ans(β). Therefore ans(β) = X, and β is a precise description for X.
(←) We prove that if for some document d ∈ D γ(d)e �⊆ X, then X has no
precise LU description. Let d′ �∈ X and d′ ∈ γ(d)e. Then, d′ ∈ Ce for each
super-concept of γ(d). But there is no concept extent containing d other than
those of the super-concepts of γ(d). It follows that any description containing d
also contain d′, thus X has no precise LU description. �

In order to exemplify this last proposition, let us consider again the formal
context shown in Figure 1. In this context, γ(2)e = {2, 4}. This is a consequence
of the fact that ε(2) ⊆ ε(4) and implies that all concepts having 2 in their extents
(i.e.γ(2) and its super-concepts) also have 4 in their extents, therefore any set
of documents containing 2 but not 4 does not have a precise LU description.
However, the power of disjunction is not to be underestimated, because while
LS and LC precise descriptions are unique, a set of documents X may have more
than one precise LU description. This is due to the fact that X may be covered
by concept extents in more than one way. Let us consider for instance the set
{2, 3, 4, 5} in our running example. This set has a precise LU description, since
it satisfies the condition established by the last Proposition, namely γ(2)e ⊆
{2, 3, 4, 5} and the same holds for γ(3)e, γ(4)e and γ(5)e. According to the proof
of the last Proposition,

β = (B ∧ C) ∨ (A ∧D ∧ F ) ∨ (D ∧ E ∧ F ) ∨ (A ∧ E ∧ F )

is a precise description of {2, 3, 4, 5}. However, since μ(B) = ({2, 4, 5}, {B})
and γ(3) = ({3}, {A, C, D, F}), also B ∨ (A ∧ D ∧ F ) is a precise description
of {2, 3, 4, 5}. This latter description is intuitively preferable over the former,
since it denotes the same set but it is much shorter. Indeed, every disjunct of
the latter description is a subset of a disjunct of the former description; this
means that the former description may have more as well as larger disjuncts
(set-theoretically speaking), however both of these can be pruned to obtain an
equivalent but shorter description.

In order to capture formally this preference criterion, we define a relation
between disjunctive queries. To this end and for the sake of simplicity, we will
regard simple queries as sets of terms. Given two disjunctive queries α = D1 ∨
. . . ∨ Dm and β = E1 ∨ . . . ∨ En, α is preferred over β, α�β, if and only if
ans(α) = ans(β) and for every disjunct Di in α there exists a disjunct Ej in β
such that Di ⊆ Ej . � is reflexive and transitive, thus (LU ,�) is a pre-order. A
description is said to be minimal if it is a minimal element of (LU ,�), that is no
description is preferred over it. We then set out to find minimal descriptions. FCA
proves very helpful to this end. In order to show how, we must first introduce
the notions of candidate concept and minimum set cover.

– Given a set of documents X ⊆ D, a candidate concept for X is a concept C
such that Ce ⊂ X and no super-concept D of C exists such that De ⊂ X.
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– Given a collection C of subsets of a finite set S, a set cover for S is a subset
C′ ⊆ C such that every element in S belongs to at least one member of C′.
A set cover is minimum if no set cover exists with a smaller cardinality.

As it can be proved: For all sets of documents X ⊆ D,

1. if X = ψ(ϕ(X)), then σ(ϕ(X)) is the only minimal LU description of X ;
2. if X ⊂ ψ(ϕ(X)), then a LU description D1 ∨ . . . ∨ Dn of X is a precise

minimal LU description for X iff, for all 1 ≤ j ≤ n, Dj = σ(Ci
j) where Cj is

a candidate concept and Ce
1 , . . . , Ce

n is a minimum set cover for X amongst
the extents of all candidate concepts for X.

From a computational point of view, the above characterization of minimal
precise descriptions does not look particularly good, since these are equated to
minimum set covers, whose computation is strongly suspected to be intractable
[13]. The question arises whether there exists an equivalent characterization that
is more amenable to computation. Unfortunately, the answer is negative. The
next Proposition shows that MINIMUM SET COVER can be reduced to the
computation of a minimal description, thus giving a lower bound for the latter
problem.

Proposition 4. Computing a minimal LU description is NP-hard.

Proof: We reduce MINIMUM SET COVER to our problem. Given an instance
of MINIMUM SET COVER, that is a collection C of subsets of a set S, we define
the formal context (D, T, i) as follows:

– D = S ∪ {o} where o is any object not in S;
– T has one term ti for each element Ci of C, plus an extra term u which is

any object not in S.
– i is defined as follows:
• for all s ∈ S, if s ∈ Ci then (s, ti) ∈ i;
• (o, u) ∈ i;
• nothing else is in i.

It can be proved that each minimum set cover corresponds to a precise, minimal
LU description for S and vice-versa. �

Candidate concepts play a key role in computing minimal, precise LU descrip-
tions, since each of such descriptions is obtained by combining the extents of
those concepts so as to form a minimum set cover for X. An efficient way to
compute candidate concepts is therefore fundamental. Iterating through all con-
cept extents and retaining the maximal subsets of X is certainly a way of doing
it, but not necessarily an efficient one, since a context may have an exponential
number of concepts (in the size of the context). Fortunately, there is a more
efficient method. It can be easily checked that, for all sets of documents X, the
extents of the candidate concepts for X are given by:

max
t∈T
{Y = (ε(t) ∩X) | Y = ψ(ϕ(Y ))} (4)
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procedure c3 (X : set of document id)
1. begin
2. AX ← ∅
3. for each term t in T do
4. begin
5. Y ← ε(t) ∩X
6. if � ∃ Z ∈ AX such that Y ⊆ Ze and Y = ψ(ϕ(Y )) then
7. begin
8. for each concept V ∈ AX such that V e ⊂ Y do AX ← AX \ V
9. AX ← AX ∪ (Y, ϕ(Y ))

10. end
11. end
12. return AX

13. end

Fig. 3. The c3 procedure

where maximality is with respect to set-containment. Clearly, every member of
this set is the extent of a concept, a subset of X, and a maximal one. Notice
that if X = ψ(ϕ(X)), X is the only member of this set.

It follows that the set of candidate concepts of X, AX , can be computed
efficiently by iterating through the terms, as the procedure c3 (Figure 3) does.
For each term, c3 computes in Y the overlapping between the extension of the
term and X. If there already is in AX a concept with an equal or larger extent
that Y, then Y needs no longer to be considered because, even though it turns
out to be a concept extent, it will not be maximal. Otherwise, if Y is the extent
of a concept, that is Y = ψ(ϕ(Y )), then it may be the extent of a candidate
concept, so it is added to AX after removing from it the concepts with a smaller
extent. Thus, when all terms have been examined, AX contains the concepts
whose extents are all the members of the set (4).

Let us consider again the set {2, 3, 4, 5} for which we wish to find a minimal,
precise LU description in our running example. By running c3 on the context, we
have the results shown in Table 1. For each term, the Table shows the overlap of
the term extension with X, if this is a concept extent, the intent is shown next,
and in the last column whether or not the concept is candidate. There turns out
to be only 2 candidate concepts, so there is only one minimum set cover for X
that can be constructed with the extents of these 2 concepts, therefore the only
minimal, precise LU for X is:

(
∧

σ({B, true})) ∨ (
∧

σ({F, true})) = B ∨ F

In this example, the minimum set cover problem has no impact, due to the toy
size of the example. In real cases, however, candidate concepts can be as many
as the terms, and an approximation technique may have to be used in order to
avoid long computations. In alternative, an incomplete method may be chosen,
returning a non-minimal description.
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Table 1. Run of c3 with X = {2, 3, 4, 5}

t ε(t) ∩X intent candidate

A {3, 5} {A,F, true} no
B {2, 4, 5} {B, true} yes
C {2, 3, 4} no
D {3, 4} {C,D,F, true} no
E {4, 5} {E, F, true} no
F {3, 4, 5} {F, true} yes

9.1 Imprecise LU Descriptions

An imprecise LU description might be desirable in case a precise one does not
exist or is not satisfactory, for instance because too long. Here the problem is: to
find the minimal description amongst the descriptions having minimal impreci-
sion. This problem has a unique solution which we have already seen: σ(ϕ(X)).
This is due to the fact that (ψ(ϕ(X)), ϕ(X)) is the smallest concept whose extent
includes X. Thus, (ψ(ϕ(X)) is the only concept extent with minimal imprecision.
In our example, if we do not like the description (B ∨ F ), our best alternative
in LU is σ(ϕ(X)) = true.

10 DNFS Descriptions

We conclude this study by considering DNFS descriptions, that is formulas in
LD. As we have already observed in Section 6, a set of documents X has always a
precise DNFS description, but from the results of the last Section, we know that
there may be more such descriptions. However, since the definition of minimality
devised for LU descriptions carries over LD descriptions, the same technique
can be applied. In order to illustrate, let us consider the document set {1, 2, 3}.
Table 2 shows the results of running c3 on this set, similarly to Table 1. The
extents of the 3 candidate concepts identified by c3 allow us to construct two
minimal, precise LD descriptions for the given set of documents, namely:

(
∧

σ({A,¬B, C, D, true})) ∨ (
∧

(σ({C,¬E, true})) = ¬B ∨ ¬E
(
∧

σ({A,¬B, C, D, true})) ∨ (
∧

(σ({C,¬F, true})) = ¬B ∨ ¬F

11 Related Work

The use of FCA in information system is not new (for a survey, see e.g. [19]).
The structuring of information that FCA supports has inspired work on brows-
ing [15,6], clustering [7], and ranking [9,18]. A basic drawback of these approaches
is that they require the computation of the whole concept lattice, whose size
may be exponential in that of the context, as it is well-known. An integrated
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Table 2. Run of c3 on the augmented context with X = {1, 2, 3}

t ε(t) ∩X intent candidate

A {1, 3} {A,¬B,C,D, true} yes
B {2} {¬A,B,C,¬D,¬E,¬F, true} no
C {1, 2, 3} no
D {1, 3} already considered no
E {1} non-maximal no
F {3} non-maximal no

¬A {2} already considered no
¬B {1, 3} already considered no
¬C {} non-maximal no
¬D {2} already considered no
¬E {2, 3} {C,¬E, true} yes
¬F {1, 2} {C,¬F, true} yes

approach to browsing and querying that uses only part of the lattice, and thus
can be computed efficiently, is presented in [8], and extended to include user
preferences in [17]. The usage of FCA for computing predicates describing sets
of objects is novel, and complements the results of above mentioned approaches
on the relationship between queries and concepts.

12 Conclusions

Thanks to the elementary notions of FCA, we have been able to solve a basic
problem arising in DL collection management: the determination of a description
for a given set of documents. We plan to expand the results obtained in this paper
in 2 directions:

– by considering collection updates, in terms of insertion and removal of single
documents from a collection extension; and

– by considering extensive usage of collection intensions for query processing,
alluded to in Section 5. In fact, by introducing collection intensions we can re-
duce query processing in a DL to answering queries based on views, a problem
that has been intensely studied in the database area in the last decade.

We also plan to set up experiments which would validate from a practical point
of view the results obtained in this paper.
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Abstract. This paper investigates the scalability of applying Formal
Concept Analysis to large data sets. In particular we present enhance-
ments based on an existing spatial data structure, the RD-Tree, to better
support both specific use with Formal Concept Analysis as well as generic
multidimensional applications. Our experiments are motivated by the ap-
plication of Formal Concept Analysis to a virtual filesystem [11,20,16].
In particular the libferris [1] Semantic File System.

1 Introduction: Information Retrieval and Formal
Concept Analysis

In previous work we have shown that the application of spatial indexing to For-
mal Concept Analysis (FCA) can vastly improve query times [19]. Subsequent
research was directed toward improving the spatial indexing techniques them-
selves [18]. This paper improves upon [18] by applying FCA to improve the
spatial indexing structure.

The primary goal of this paper is to improve the efficiency of FCA on large
formal contexts. Two subgoals can be seen – the improvement of the spatial
indexing structure independent of the data it is indexing and improvements that
rely on both the spatial indexing structure and the fact that FCA is being applied
using that spatial index. An example of the latter would be the spatial index
relying on knowledge from the FCA application in order to employ specialized
compression as explained in Section 4.

FCA [10] is a well understood technique of data analysis. FCA takes as input
a binary relation I between two sets normally referred to as the object set O and
attribute set A and produces a set of “Formal Concepts” which are a minimal
representation of the natural clustering of the input relation I. Formal concepts
are hereafter referred to simply as concepts. A concept is a pair (X ⊆ O, Y ⊆ A)
such that X cannot be enlarged without reducing |Y | and vice versa. The appli-
cation of FCA to non-binary relations, such as a table in a relational database,

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 82–97, 2007.
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can be achieved by first transforming or “scaling” the input data into a binary
relation [10,21].

For a concept (X, Y ), X is called the extent and is the set of all objects that
have all of the attributes in Y , similarly Y is called the intent and is the set of
all attributes possessed in common by all the objects in X . As the number of
attributes in Y increases, the concept becomes more specific, i.e. a specialization
ordering is defined over the concepts of a formal context by:

(X1, Y1) ≤ (X2, Y2) :⇔ Y2 ⊆ Y1

This ordering is a concept lattice which is normally presented as a Hasse diagram
with special labeling rules [10].

A common approach to document and information retrieval using FCA is
to convert associations between many-valued attributes and objects into binary
associations between the same objects O and new attributes A. For example,
modeling a filesystem the files would form the object set O. A many-valued
attribute showing a file’s size as numeric data may be converted into three at-
tributes: small, medium, large which are then associated with the same set of
files O. The binary relation I between o ∈ O and a ∈ A = {small, medium,
large} is formed by asserting oIa depending on the level of the numeric size
value of file o. The binary relation I is referred to as a formal context in FCA.

This is the approach adopted in the ZIT-library application developed by
Rock and Wille [23] as well as the Conceptual Email Manager [6]. The approach
is mostly applied to static document collections (such as news classifieds) as in
the program Rfca [5] but also to dynamic collections (such as email) as in Mail-

Sleuth [2] and files in the Logical File System (LISFS) [20]. In all but the latter
two the document collection and full-text keyword index are static. Thus, the
FCA interface consists of a mechanism for dynamically deriving binary attributes
from a static full-text index. Many-valued contexts are used to materialize formal
contexts in which objects are document identifiers.

A specialized form of information retrieval system is a virtual file system
[11,20,16]. The idea of using FCA to generate a virtual filesystem was first pro-
posed by using a logical generalization of FCA [8,7] and in more recent work
using an inverted file index and generating the lattice closure as required by
merging inverted lists [20]. In a virtual file system scalability becomes a critical
concern because such a system deals with potentially millions of documents and
hundreds/thousands of attributes [19,17].

It has been found that spatial indexing structures can greatly reduce typical
query times in FCA [19] – we will discuss the type of query we consider in the
next section. This has prompted research into improving the existing spatial
indexing structures to better support FCA. In many cases the improvements
needed by FCA are also applicable to general purpose multidimensional queries.
As such, our empirical testing includes application to generic data mining input
as well as specific application to FCA. The core focus of the paper remains on
improving RD-Trees with the express purpose of improved FCA performance.
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2 Indexing and Scalable Knowledge Processing with
Formal Concept Analysis

Typical FCA queries seek all index entries which either (a) exactly match a given
key or (b) are a superset of the given key. As an example of (b) consider FCA
on animal species: one concept might contain the attributes {has-tail, has-fur},
to find the objects which match this concept we want to know all known objects
which have at least these attributes but may include other attributes as well.
Both of these common queries can be vastly aided with spatial indexing [15].
Note that even exact match queries present problems for conventional B-Tree
indexes due to attribute ordering in index creation [19].

Other computationally intensive tasks in FCA including the calculation of
the set of concepts for a given context are most efficiently handled using Data
Mining algorithms [24,12].

The spatial indexing structure most suited to aiding FCA is the RD-Tree. The
RD-Tree is derivation of the R-Tree spatial index. Typical secondary storage
terminology is assumed: tree nodes are generally size matched to disk blocks [9],
nodes at the bottom of a tree are leaf nodes, nodes leading to leaf nodes are
internal nodes. The terms tree node and page are used interchangeably where
no ambiguity arises.

The R-Tree [13] is a data structure that was created to allow spatial objects
to be indexed effectively. Keys in an R-Tree are n-dimensional bounding boxes.

The internal nodes in an R-Tree structure contain entries of the form;
(bounding n-dimensional box, page pointer), where pages in the subtree
reached by page pointers are within the given bounding n-dimensional box (see
Fig. 1). This transitive containment relation is the heart of the R-Tree. R-Trees
are not limited to 2 or 3 dimensional data but typically use page sizes allowing
branching factors much closer to B-Trees than shown in the example.

Searching for a spatial object in the R-Tree starts at the root node and con-
siders all children whose bounding box contains the query object. Searching for
the query object in Fig. 1 begins at the root node (R) – the left node (C1) has
a bounding box not containing the query object so only the right child (C2) is
followed. In turn, the new left node (C2.1) contains the query object and will be
followed whereas (C2.2) is not. At the lowest level (the children of C2.1) many
nodes may contain the query object and these are followed to retrieve tuples in
the base table.

When data is added to an R-Tree eventually a leaf node will become overfull.
When a node is overfull it is split into two nodes: the original node and a new node.
Entries are then redistributed between the original node and the new node. The
creation of the new node necessitates a new entry in the original node’s parent
linking the new node into the tree structure. By adding an entry into the parent
node the parent itself may become overfull and thus the process of splitting nodes
will continue up the tree to the root while overfull nodes still exist.

When an index page becomes overfull and needs to be split into two pages, the
R-Tree first selects the two elements who’s bounding box are furtherest apart as
keys to be placed into the parent. The remaining elements are then distributed
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R

Base Table

Query Object

C1 C2

C2.2

C2.1

Fig. 1. An example R-Tree with a query object on the left. Each node has a bounding
box which fully contains all objects in its child nodes. An implementation stores the
bounding box for each child in the parent node. Note the example is limited to 2
dimensional space with a low branching factor for presentation purposes.

as children of one of these new parent keys. A child is distributed into the node
to which it causes the least expansion of that node’s bounding box. This is the
classic Guttman page split [13].

The RD-Tree [15] operates similarly to the R-Tree by treating input as an
n-dimensional binary spatial area. The R-Tree notion of containment is replaced
by set inclusion and the bounding n-dimensional box replaced by a bounding set.
The union of a collection of sets forms the bounding set. The bounding set of a
child is thus defined as the union of all the elements in the child. The bounding
set defined in this way preserves the “containment” notion of the R-Tree during
search as a subset relation. When seeking an element which might be in a child
it is sufficient to test if the sought element is a subset of the bounding set for the
child to know if that subtree should be considered. The standard RD-Tree page
splitting is based on the spatial R-Tree index structure’s page splitting with a
generalization of Guttman to sets.

A framework for building secondary storage search trees was recently intro-
duced as the Generalized Index Search Tree (GIST) [14,3]. A GIST abstracts
the core operations of a tree index structure into a small well defined collec-
tion of functions. Both the R-Tree and RD-Tree can be considered as specific
GISTs. The page splitting and propagation of page splits toward the tree root as
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described above directly transfers into a GIST. A major advantage of using GIST
is the ability to extend existing tree algorithms or make modifications to various
operations to improve performance for specific data sources.

The process of adding an entry to a GIST can be considered as two parts:
finding the appropriate leaf node in the index, and adding an entry to that leaf.
Finding the leaf node occurs in a similar manner to normal search. The difference
between search and insert being when a node has multiple children which could
contain the new entry a penalty function is used to decide which child node to
insert the entry into. An entry can only be inserted into one leaf node. Typically
penalty will select the child node which is the most closely related to the new
entry to aid future searches.

When a node becomes overfull in a GIST a new page is created and the
redistribution of keys is delegated to the picksplit function. For the R-Tree and
RD-Tree the above mentioned Guttman page split would form the picksplit
function. This function decides for each of the entries in the overfull node whether
to store that entry into the original node or new node and provides the updated
and new keys for the parent node.

It can be seen from the above description that the functions which will decide
the shape of a GIST are the penalty and picksplit functions. We now consider
customizations of the RD-Tree picksplit function.

3 Asymmetric Page Split

We now focus on improving the picksplit function of the RD-Tree.
There is a major distinction between the standard R-Tree index keys and

the RD-Tree index keys: the R-Tree index key is based around n-dimensional
bounding boxes whereas the RD-Tree is based around a “bounding set”. For a
given page the bounding set is simply the union of all the keys in the page. The
bounding set faithfully serves the same purpose as bounding box from which it
was derived; both can be treated in a similar manner as a “container” in which
all keys of a child page must reside.

Any n-dimensional bounding box can always be represented as 2× n coordi-
nates: those coordinates in n-space on two opposite sides of the bounding box.
A bounding set has no such fixed representation and can require an arbitrary
number of elements to represent it (up to the set cardinality). This distinction is
very important, an RD-Tree based index structure needs to focus on keeping its
keys small, particularly those closer to the root of the tree. Both a voluminous
bounding box and a bounding set with many elements are less effective in lim-
iting the amount of a GIST that must be searched. However, a large bounding
set will also consume more of a page, limiting the branching factor of the tree.

For an index on the same information, a tree with a lower branching factor
will be a deeper tree [9]. A limited branching factor index will also require more
internal nodes. The efficient caching of internal nodes in a computer’s RAM is
critical to index performance [9]. Having more internal nodes will decrease the
effectiveness of such RAM caches.
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Another critical factor in the selection of small bounding sets is that once
a bounding set is selected for a parent that bounding set has great difficulty
becoming smaller. Effective propagation of such bounding set reductions toward
the root of the GIST generally takes so long as to effectively not occur. Further
compounding this issue is that poorly chosen bounding sets at the leaf node
level will eventually promote overly large bounding sets towards the root of the
GIST.

Minimization of the number of elements in any bounding set should be a
priority given that variation in size of the bounding set effects the overall tree
branching factor. At times a picksplit function should favor making one of the
new bounding sets slightly larger if it means a that the other bounding set can
become substantially smaller.

If the page split is too asymmetric then one of the resulting pages may contain
only a single element. Such an index structure may lead to many leaf pages being
drastically under full and degrade overall performance. To counter this situation
a minimum page fill ratio can be selected. There is a balance between maintaining
this minimum ratio and the extension of the bounding set required to do so.

Two methods to achieving an asymmetric page split are considered; a custom
distribution function to completely replace the Guttman function [18] and the
application of the Guttman distribution followed by a redistribution using FCA.

The first distribution function first appeared in [18]. It is presented in this
paper as a good heuristic driven implementation for comparative benchmarking
with the FCA driven distribution function.

3.1 Complete Replacement of Guttman

This customized asymmetric picksplitalgorithm pre-allocates elements to pages
where they will not expand the page key, tries to minimize the expansion to one
of the bounding sets, incrementally takes into account any expansion of bounding
sets while distributing elements and attempts to leniently maintain a minimum
page fill. The basic algorithm is shown in Fig. 2.

Note that the complexity of the core algorithm after the initial left and right
keys are selected and before post split shuffling is linear in the number of keys to
distribute. The shuffle process can range from linear to k2 where k is the number
of keys. There are areas of the algorithm which invite variation. The major one
being how best to handle a drastically asymmetric page split.

3.2 Guttman Distribution Followed by FCA

In this method the standard Guttman generalization [15] is applied followed by
the use of FCA to improve the cardinality of one of the bounding sets.

The algorithm is shown in Fig. 3. Abstractly the algorithm is mainly concerned
with selecting which keys from the source page to move to the target page based
on information from the concept lattice of the source page. As the final step of
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1. Using the standard RD-Tree method select the initial left L and right R sets as new
parent keys.

2. For all sets yet to be distributed, preallocate any set which is a non strict subset of
either parent key {L, R}.

3. For all unallocated keys
(a) Test if the current key is a subset of either updated parent key, if so then allocate

that key to the child page of the respective parent key.
(b) Attempt to minimize expansion of either parent key, when expansion has to occur

prefer to expand the right parent’s bounding set.
(c) If both parents would have to expand the same amount to cater for a key then

distribute as per the normal RD-Tree method.
4. If either page is drastically under full shuffle keys into it from the other page. A page is

under full if it is less than 10% utilized. Do not expand the under full page’s bounding
set by more than x elements. For our testing x = 1 unless specified.

Fig. 2. Pseudo code for asymmetric page split. Pre-allocation will require a traversal
over all keys to be distributed and set union with each key and L and R. The next step is
the central part of the algorithm and only loops over keys once. The central distribution
will require set unions with each key and both L and R. These cannot be cached from
the values computed during pre-allocation because L and R are incrementally expanded
during this phase. The final shuffle phase potentially touches most of the keys to be
distributed.

updating the extent sizes for the THeap set is a computationally intensive task
it is made optional and leads to two implementations for later benchmarking.

Shown in Fig. 4 is the an example concept lattice for a page after the Guttman
algorithm has been applied. Notice that the concept nodes are colored depending
on the number of keys which exactly match their concept or any downward
transitively connected concept. One can immediately see that concepts with
intent “c” and “d” are less strongly connected to the page. In the following
concepts will be identified by their intent, for example, from the above we shall
simply say concept “c” and “d”. In particular there is a low overlap between “c”
and “a” or “b”.

Considering Fig. 4, assuming that the fixed cutoff of 40% allowed 14 of the
36 keys to be moved, the algorithm in Fig. 3 would first move the key matching
the “d” concept from the source to the target page. Following this movement of
1 key the next smallest movement would be for concept “c”. The movement this
time is for 5 keys making a running total of 6 keys moved. By elimination, the
next candidate would be “a” or “b”. This is where the updating of THeap makes
a difference. If THeap is not updated then it is luck if “a” or “b” are selected
because their initial counts are identical. If “a” is selected then the algorithm
will terminate rather than move 12 more keys making a total of 18 > 14. If “b” is
selected (which is guaranteed when updating THeap) then the 8 keys matching
“b” are moved. Note that there are only 8 matches because the previous move
of “c” also moved the keys in common with “b and c”.
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1. Apply the standard Guttman algorithm to obtain the initial two page distribution.
2. Calculate the size of the bounding sets of both pages. The page with the smaller

bounding set is the source page and the other the target page.
3. Calculate the maximum number of keys to move k from as the number of keys in the

source page multiplied by a cutoff percentage x.
4. For the source page:

(a) Find the Intent (TI) of the top formal concept of the page.
(b) Find the lower covers of (TI) and sort them by their extent size. Store this in

THeap.
(c) Initialize CumulativeKeysMoved = 0
(d) While less keys than k have been moved:

i. select the next lower cover of (TI) that has yet to be considered working from
the lower cover with the smallest extent to the largest.

ii. Set CumulativeKeysMoved = CumulativeKeysMoved + number of keys in
(TI).

iii. If CumulativeKeysMoved > k then exit
iv. Move the keys in (TI) to the target page
v. optionally Remove (TI) from THeap and recalculate the extents in THeap

and resort it by extent size.
5. If the sum of the size of the final bounding sets for the source and target page are

larger than the initial sum of the size of the bounding sets then ignore the results of
FCA. Otherwise apply the asymmetric page split.

Fig. 3. Pseudo code for asymmetric page split using Guttman and an FCA post
process to achieve superior bounding set sizes

4 Customized Key Compression

If the input bounding sets are generated from a known structure then compres-
sion can take advantage of that structure. The use of FCA makes available both
full and partial implication information. Consider the application of FCA to a
numeric input using a linear ordinal scale: given a set of objects O such that each
o ∈ O has a numeric value v ∈ V associated with it such a scale will generate a
set of (binary) formal attributes a ∈ A associated with the set O. For example,
if the object set was formed using the planets and V was the number of moons
of the planet then perhaps A = {some, few, many} where planets which have
few moons also have some moons by implication.

Such ordinal scaling is typical in many applications of FCA [10].
If we are representing a bounding set as a bitset and the first 63 bits are the result

of such a linear ordinal scale then there is a direct implication between a bit and its
predecessors. If there is an implication between bits then compression is possible.

Instead of using 63 bits to store this scale we can compress this to just 6
bits by storing only the position of the highest set bit in the first 63 bits. Some
examples are shown in Fig. 5.

If one considers a GIST created using two ordinal scales then the bounding
set can always be compressed to just two integers. It is much more difficult to
take advantage of cross implications between the two ordinal scales.
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Fig. 4. Concept lattice for the source page after Guttman’s algorithm has been applied
to obtain the initial distribution. The letters above the nodes indicate which attributes
are introduced at that concept. When an attribute is introduced at concept x all
concepts connected below concept x in the diagram also have that attribute. The
numbers below the nodes indicate how many keys match that concept or any connected
below it. For example, there is one key with attributes {d}, four keys with at least {b, c}
and one with {a, b, c}.

Original set compressed stored bitset physical size (bits)

{1, 2, 3, 4, 5} N 11111000...0 63
{1, 2, 3, 4, 5} Y 000101 6
{1, 2, 3, ...35, 36} N 111000...001100...0 63
{1, 2, 3, ...35, 36} Y 100100 6

Fig. 5. Compression of a bitset representing a linear scale

If the compression used by the GIST is to change then expensive updates to
the index would be required. Potentially, every bounding set which is compressed
would have to be loaded, decompressed, recompressed and saved again. Thus any
implications between two ordinal scales which are to be factored into the GIST
compression would need to be asserted by a domain expert.

The storage of a single integer for each ordinal scale in no way changes the
mechanics of the GIST. Due to the storage of two integers it may be tempting
to think that the tree is in some way more closely related to the B-Tree [9]. This
is not the case, the compression is simply an implementation artifact to enable
more bounding sets to be stored in internal nodes.



Custom Asymmetric Page Split Generalized Index Search Trees and FCA 91

5 Performance Analysis

The benchmark system is an AMD XP running at 2.4GHz with 1Gb of RAM.
The database is stored on a single 160Gb 7200RPM PATA disk. The implemen-
tations use the PostgreSQL GIST system. Testing was performed on the Covtype
database from the UCI dataset [4] and a synthetic formal context generated with
the IBM synthetic data generator [22].

Where an implementation includes the NC postfix there is no compression of
bounding sets. Where an implementation includes the Comp postfix in its name
it employs compression of bounding sets. Note that the compression is only ever
applied to the bounding sets on internal pages, never to leaf nodes.

There are two compression techniques used – a generic compression Comp and
compression relying on FCA knowledge FCAComp.

The RD and RD-Comp use the standard Guttman picksplit. The RD-Comp
is exactly the same RD-Tree GIST implementation that is distributed with the
PostgreSQL database server. As such it serves as an effective baseline to compare
other implementations with.

The Asym-NC uses the asymmetric page split algorithm from Section 3.1,
Shuf-NCbuilds on Asym-NCby performing a shuffle after the initial allocation in an
attempt to subvert the creation of drastically under full pages. Finally Shuf-Comp
builds on Shuf-NC by including compression of bounding sets. These implementa-
tions use an allowed cardinality expansion of 1 (see Section 3.1). To demonstrate
gains for the compression outlined in Section 4 the Shuf-FCAComp takes advantage
of the ordinal nature of the scales used to generate the set elements.

The GuttFCA implementations use the standard RD-Tree generalized Guttman
distribution followed by FCA to provide an asymmetric page split as detailed in
Section 3.2. The “R” postfix indicates that the THeap is recalculated after keys
from a concept are moved to the target page. The 30p and 50p postfixes indicate
a 30% and 50% target for the number of keys to distribute from the source page
respectively. All the GuttFCA implementations use compression – either generic
compression when the Comp postfix is used or FCA specific compression when the
FCAComp postfix is used.

Two major metrics of interest are the tree depth and the number of internal
nodes in the GIST. It is highly unlikely that an entire GIST will be resident in
RAM. Normally some of the tree can be cached in RAM for a successive search.
By minimizing the number of internal nodes and the overall tree depth we can
increase the chances that successive searches can find an internal node in the
RAM cache.

5.1 Performance on Synthetic Data

The following use synthetic data generated with the IBM synthetic data genera-
tor [22]. Parameters include the number of transactions (ntrans), the transaction
length (tlen), length of each pattern (patlen), number of patterns (npat) and
number of items (nitems). The parameters were as follows: ntrans=1,000,000,
nitems=1000, tlen=32, patlen=7, npats=10000.
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Index tree index leaf internal mean
depth size node node leaf

(Mb) count count free

rd16
RD-Comp 3 63.5 8033 95 3950
Shuf-Comp 3 64.9 8233 77 4051
GuttFCA-30p-Comp 3 63.9 8097 80 3982
GuttFCAR-30p-Comp 3 64.1 8118 81 3993
GuttFCA-50p-Comp 3 64.5 8175 77 4021
GuttFCAR-50p-Comp 3 64.5 8181 79 4025

rd32
RD-Comp 4 67.1 8462 131 3749
Shuf-Comp 4 69.5 8789 103 3910
GuttFCA-30p-Comp 4 68.2 8620 107 3827
GuttFCAR-30p-Comp 4 68.8 8698 104 3864
GuttFCA-50p-Comp 3 69.5 8797 100 3913
GuttFCAR-50p-Comp 3 69.7 8820 99 3924

rd1024
RD-Comp 5 81.5 9739 697 2804
Shuf-Comp 5 142.5 17577 669 5117
GuttFCA-30p-Comp 5 83.5 9982 710 2928
GuttFCAR-30p-Comp 5 84.8 10169 679 3020
GuttFCA-50p-Comp 5 91.4 11003 695 3384
GuttFCAR-50p-Comp 5 95.2 11599 582 3600

Fig. 6. Overall statistics for various GIST implementations on the IBM data mining
synthetic database

The output of the IBM synthetic data generator is a list of ntrans transactions.
Each transaction contains a number of items. Each item is represented by a
unique integer in the range {1, ..., nitems}. Transactions were imported into
an int array field in a PostgreSQL table including only the first n items for
n ∈ {16, 32, 1024}. Such an arrangement allows an RD-Tree to easily be created
on the input data of varying dimensionality.

The static index structure is presented in Fig. 6. Gains can be seen for both
the 32 and 64 dimensional RD-Tree picksplit customizations. For the 1,024
dimensional data the standard Guttman picksplit remains superior. Notice
that for the rd32 the GuttFCA-30p-Comp is 1.6% larger on disk with about
2% more leaf nodes though has only 82% the number of internal nodes when
compared to RD-Comp.

A series of subset queries was posed to the database for one, two and three
attributes to test the effectiveness of the index structure. Given that the three
indexes contain 16, 32 and 1,024 attributes the single attribute queries were for
each of the attributes that the index contains. As nitems=1,000 there are C1,000

2 =
499, 500 combinations of two attribute queries possible. As such, for each of the
n-attribute queries and index on the first r attributes, only r−n queries are posed.
These are for i ∈ {1, 2, ..., r−n} for the attributes {ai, ..., ai+n}. As the input data
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Index in1 lf1 in2 lf2 in3 lf3

rd16
RD-Comp 6147 1851 4515 3362 3772 123
Shuf-Comp 2013 597 1041 88 712 31
GuttFCA-30p-Comp 2587 745 1197 116 869 43
GuttFCAR-30p-Comp 2550 750 1101 117 670 35
GuttFCA-50p-Comp 1634 554 789 76 586 22
GuttFCAR-50p-Comp 1677 548 766 67 525 20

rd32
RD-Comp 6584 1926 5045 455 4129 168
Shuf-Comp 3868 905 1658 188 1044 60
GuttFCA-30p-Comp 3887 1051 2000 214 1375 77
GuttFCAR-30p-Comp 3503 1002 1846 202 1282 69
GuttFCA-50p-Comp 2822 820 1413 158 921 51
GuttFCAR-50p-Comp 2543 761 1242 137 819 43

rd1024
RD-Comp 8933 4622 7586 2156 6451 1083
Shuf-Comp 8387 2578 4229 889 2432 384
GuttFCA-30p-Comp 9507 4580 8409 2206 7425 1156
GuttFCAR-30p-Comp 9218 4197 7703 1894 6394 947
GuttFCA-50p-Comp 9382 4097 7529 1862 6234 958
GuttFCAR-50p-Comp 8619 3457 6209 1383 4666 652

Fig. 7. Average number of internal and leaf keys touched for single, two and three
attribute queries on various GIST implementations. Note that i3 is the internal mean
and l3 is the leaf mean. Internal counts are exact, leaf counts are expressed as figures
rounded to the nearest hundred. ie. a leaf count in the table of n is for a reading of
n × 100 leaf keys.

should not be biased toward such queries they should when averaged be fairly rep-
resentative of any such n-attribute query against the data. Shown in Fig. 7 are the
mean number of internal and leaf keys touched while performing these queries.

Note that the FCA picksplit both yield superior results for the 16 and 32
attribute indexes. In particular the GuttFCA-50p-Comp index touches less than
16% the number of internal keys than RD-Comp for 3 attribute queries against
the 16 attribute index.

5.2 Performance on UCI Covtype Dataset

This section examines the implementations in the setting of the application of
FCA on a large data source. This selected application is particularly difficult
due to it having 512 formal attributes as well as each formal object having a
relatively large number of attributes.

The UCI covtype database consists of 581,012 tuples (formal objects) with 54
columns of data (many-valued attributes). For this paper two numeric columns
were used: the aspect and elevation. The formal attributes, each of which forms a
binary relation with the tuples were created for the most frequent 256 values for
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Index tree index leaf internal mean
depth size node node leaf

(Mb) count count free
(Mb) count count free

RD-NC 17 66.1 3883 4582 5247
Asym-NC 14 52.2 3581 3100 4799
Shuf-NC 12 47.1 3353 2680 4539

RD-Comp 7 37.7 3846 977 4946
Shuf-Comp 7 33.1 3321 915 4565
GuttFCA-30p-Comp 6 34.3 3652 741 4681
GuttFCA-50p-Comp 6 34.3 3648 739 4677
GuttFCAR-30p-Comp 6 34.3 3652 741 4681
GuttFCAR-50p-Comp 6 34.3 3648 739 4677

Shuf-FCAComp 3 23.4 2912 35 3651
GuttFCA-30p-FCAComp 3 25.3 3207 35 4056
GuttFCA-50p-FCAComp 3 25.3 3207 35 4056
GuttFCAR-30p-FCAComp 3 25.3 3207 35 4056
GuttFCAR-50p-FCAComp 3 25.3 3207 35 4056

Fig. 8. Overall statistics for various GIST implementations on the scaled UCI covtype
database mediumscaledcov

both aspect and elevation resulting in 512 binary dimensions. An example formal
attribute would be created from a predicate like “elevation < 3, 144”. A smaller
table called mediumscaledcov was created with only the first 10,000 tuples.

The static structure of the produced index for various GIST implementations
is shown in Fig. 8. As seen in Fig. 8 using an asymmetric page split can reduce
the number of internal nodes in the tree by over 30% (Comparing Asym-NC with
RD-NC). Notice that GuttFCA-50p-Comp contains 76% and 81% the number of
internal nodes when compared to RD-Comp and Shuf-Comp respectively.

Although the mean leaf fill goes down for the Shuf-Comp tree compared with
the RD-Comp, there are also fewer leaf nodes in all. Considering the statistic of:
leaf node count × mean leaf fill, the Shuf-Comp tree has an overall reduction of
over 20% compared with RD-Comp. As to be expected the custom compression
in Shuf-FCAComp significantly reduces the number of internal nodes in the tree.
By allowing more bounding sets to be stored per internal node the tree itself is
reduced in depth. Note that compressing the bounding sets for internal nodes
has a significant effect on reducing the tree depth (compare RD-Comp and RD-NC).

Queries for the extent size of 32 single attributes were executed against each
index. The 32 attributes were selected for query x as the 16xth formal attribute.
Two attribute queries were formed using the 25, 248 and 293rd attributes in
combination with every 16th attribute. The results are shown in Fig. 9. It can
be seen that using asymmetric page splits and post distribution shuffling lowers
the number of internal keys touched. The higher branching factor of the FCAComp
GIST does require more leaf keys to be touched on average.
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Index single single two two
attribute attribute attribute attribute
internal leaf internal leaf

RD-NC 5875 5184 3908 3795
Asym-NC 4800 5188 3139 3841
Shuffle-NC 4401 5218 2946 3815

RD-Comp 3491 5260 2362 3885
Shuf-Comp 3107 5249 2083 3873
GuttFCA-30p-Comp 3171 5194 2014 3881
GuttFCA-50p-Comp 3167 5194 2010 3881
GuttFCAR-30p-Comp 3171 5194 2014 3881
GuttFCAR-50p-Comp 3167 5194 2010 3881

Fig. 9. Mean number of keys touched for single and double attribute queries

The two attribute queries saw a reduction in the number of internal keys
touched with no significant changes in leaf keys touched. Of particular note, the
GuttFCA-50p-Comp GIST only touched 85% the number of internal keys when
compared with RD-Comp.

6 Conclusion

This paper explored customizations to the RD-Tree spatial data structure. Testing
was performed both in the setting for direct application to improve FCA queries
and generic multidimensional data. It has been demonstrated that using an asym-
metric distribution during page splitting in a GIST based on the RD-Tree can
improve the resulting index structure and thus query resolution time.

The application of FCA as a post process to the standard Guttman distri-
bution at page splitting time can help to improve the clustering in the index
structure itself.

The custom GIST presented offers at times a 24% drop in internal node
count and in many cases a reduction of the depth of the tree over previous
work [19]. These two metrics directly impact the query performance of such a
tree index [9]. It should be noted that in many typical applications of FCA
many hundred queries are rendered against the index [19] further compounding
the above performance advantages.

Further gains can be achieved through the application of compression tailored
to take advantage of knowledge of how FCA is being applied to the input data.
This can significantly reduce the size of the index structure. In particular the
number of internal nodes can be reduced to just 4% of that required by generic
compression. This is reflected directly in the depth of the GIST going from 7 to
just 3 levels.

This ability to resolve queries in a more timely manner enables bolder appli-
cations of FCA. For example, application to data sets the size of a filesystem
becomes possible. Due to the indexing structure’s ability to more efficiently
handle high dimensional data FCA can also be applied with a wider scope. For
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example, the ability to consider more attributes simultaneously than was
previously tractable.

Though the work on applying FCA to obtain superior clustering post page
split is still in its infancy this paper has demonstrated superior results for indexes
with 16 and 32 dimensions.
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Abstract. Strings are an important part of most real application multi-
valued contexts. Their conceptual treatment requires the definition of
substring scales, i.e., sets of relevant substrings, so as to form informa-
tive concepts. However these scales are either defined by hand, or derived
in a context-unaware manner (e.g., all words occuring in string values).
We present an efficient algorithm based on suffix trees that produces
complete and concise substring scales. Completeness ensures that every
possible concept is formed, like when considering the scale of all sub-
strings. Conciseness ensures the number of scale attributes (substrings)
is less than the cumulated size of all string values. This algorithm is
integrated in Camelis, and illustrated on the set of all ICCS paper titles.

1 Introduction

In information systems, one of the most common datatype is the string. For
instance, in a bibliographic application, most attributes are string-valued (au-
thor names, title, journal or conference name). While these strings usually bring
a lot of information, they are hardly exploited in conceptual information sys-
tems based on Formal Concept Analysis (FCA) [GW99]. They are most often
represented as (1) nominal values, which is right for entry types (e.g., “jour-
nal”, “inproceedings”) but uninteresting for titles, (2) a set of keywords given
by hand [CS00], or (3) a set of keywords derived in a context-unaware manner,
e.g., all title words [FR01].

An important objective of conceptual information systems is to ensure a tight
combination of querying and navigation [GMA93]. In this respect, the manual or
context-unaware production of keywords is unsatisfactory because they are fully
part of the navigation structure, and so should be automatically derived from
the context, like the concept lattice. We consider in this paper the automatic
derivation of substring scales, whose values are full strings (like titles), and whose
attributes are substrings (corresponding to keywords). For instance, in the case of
the bibliographic context of all ICCS papers, one would expect to have substrings
like “Formal Concept Analysis”, “Conceptual Graphs”. These substrings play
the same role as inequalities and intervals over numeric values (ordinal and
interordinal scales [GW99]), or general terms in taxonomies.

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 98–113, 2007.
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A substring scale should be complete in the sense that every possible concept
is derived from the scaled context, like when considering all substrings. A sub-
string scale should also be concise enough so as not to overwhelm users during
navigation, and be computed efficiently.

In Section 2, we present a naive conceptual scaling, and show that it does not
satisfy conciseness and efficiency. In Section 3, we introduce a new solution, and
show with the help of suffix trees that it has good properties w.r.t. complete-
ness, conciseness and efficiency. Section 4 describes an algorithm for computing
a complete substring scale from a set of string values. This algorithm is incre-
mental, and so supports context updates, as required in information systems.
It has been integrated into Camelis, an implementation of Logical Information
Systems (LIS) [FR04], and Section 5 shows its application to a bibliographic
context of ICCS paper titles, how many domain keywords are clearly identified,
and how they naturally form a taxonomy. This paper ends with a discussion
about other datatypes (Section 6), and a conclusion (Section 7).

2 Naive Approach

Suppose we have n objects, each object being decribed by a string over an
alphabet Σ. This forms a string context.

Definition 1 (string context). A string context is a triple D = (O, Σ∗, d),
where O is a finite set of objects, Σ∗ is the domain of strings over a finite
alphabet Σ, and d is a mapping from objects to Σ-strings: for every object o ∈ O,
d(o) ∈ Σ∗ is the description of the object by a string.

A string context can be seen as a multivalued context with only one attribute,
d(o) being the value of this attribute for the object o. All results in this paper
also apply to contexts with several attributes, but it is not necessary to consider
them explicitly here as each attribute can be treated in isolation.

Example 1. The following table shows a basic string context that serves as an
example in the following.

o d(o)
1 abc
2 dab
3 ac
4 dab

The cover of a substring is the set of objects whose description contains it in a
string context. This is equivalent to the definition of extent in logical concept
analysis [FR04], where formulas would be strings and substrings.

Definition 2 (cover). Let D = (O, Σ∗, d) be a string context. The cover of
a string s ∈ Σ∗ in D is defined by (where ⊇ denotes the containment relation
between strings and substrings)

coverD(s) = {o ∈ O | d(o) ⊇ s}.
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For example, in the above string context, the cover of the string ”ab” is the set
of object {1, 2, 4}.

We want to apply concept analysis on a string context, in order to group ob-
jects in a concept when they share common substrings in their description. There
is a priori no way to prefer some substrings, so that we define the conceptual
scale of all substrings of a string context, which accounts for the subsumption
relations that exist between strings and substrings.

Definition 3 (scale of all substrings). Let D = (O, Σ∗, d) be a string context.
The set of all substrings of the string context D is defined as

S(D) = {s ∈ Σ∗ | coverD(s) �= ∅},

and the related conceptual scale is defined by S(D) = (d(O), S(D),⊇).

Example 2. The scale of all substrings derived from the string context in
Example 1 is given by the following table.

ab
c

ab bc a b c da
b

da d ac
abc x x x x x x x
dab x x x x x x x
ac x x x x

A string context and its derived substring scale can be combined in order to form
a scaled formal context, from which the concept lattice can ultimately be built.

Definition 4 (scaled context). Let D = (O, Σ∗, d) be a string context. The
scaled context that is derived from D is defined by K(D) = (O, S(D), I), where

(o, s) ∈ I ⇐⇒ d(o) ⊇ s.

Example 3. The scaled context derived from the above string context and sub-
string scale is given by the following table.

ab
c

ab bc a b c da
b

da d ac

1 x x x x x x x
2 x x x x x x x
3 x x x x
4 x x x x x x x

There are now 3 properties we want to consider in the evaluation of this naive
approach:

– completeness: Is every set of objects sharing a common set of substrings a
formal concept of K(D) ?

– conciseness: Is the set of all substrings S(D) concise enough so as to be useful
for navigation ?

– efficiency: Can the formal context K(D) be computed efficiently ?
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Completeness is here trivially ensured because all substrings occuring in the
string context are considered. All other strings label only the bottom concept,
and can be ignored without practical consequence. Conciseness can be evaluated
as the size of the scale S(D). Given a string context made of n strings of length
up to k, the number of substrings is in O(k2n). Efficiency can be evaluated as
the cost of computing the scaled context. Each substring must be produced, and
checked against already produced substrings. With the help of a lexical tree,
this check can be made in O(k), so that the scaled context can be computed
in O(k3n).

To get an idea of these complexities, suppose we have 1000 strings of length
up to 100 characters (e.g., a set of paper titles), the number of substrings, and
hence the number of attributes in the scale context, would be up to 107. This
is an awful lot, and in most cases many substrings will be redundant: e.g., the
substring “ormal Contex” generally has the same cover as “Formal Context”.

3 Maximal Substrings and Suffix Trees

Our objective is to reduce the number of attributes in the scaled context, while
retaining all the information, i.e., while deriving the same extents and equiva-
lent intents. This is possible because generally many substrings label the same
concept (they have the same extent), i.e., they occur in exactly the same strings.
The most concise solution consists in retaining one substring label for each meet-
irreducible concept, but this entails a loss of information in intents and an arbi-
trary choice among substring labels.

3.1 Maximal Substrings

The idea is to retain only the more informative substrings, that is the substrings
that cannot be extended (by adding characters at the left or at the right) without
reducing their cover. This is equivalent to retaining maximal substring labels on
each concept. We define a new scale of maximal substrings.

Definition 5 (scale of maximal substrings). Let D = (O, Σ∗, d) be a string
context. The set of maximal substrings of the string context D is defined as

Smax(D) = {s ∈ S(D) | ∀t ∈ S(D) : t ⊃ s⇒ coverD(t) � coverD(s)},

and the related conceptual scale is defined by Smax(D) = (d(O), Smax(D),⊇),
where ⊇ denotes the containment relation between strings and substrings.

Example 4. The scale of maximal substrings derived from the string context in
Example 1 is given by the following table. Compared to the scale of all substrings
given in Example 2, the substring ”b” has disappeared because it has the same
cover as “ab”. The same happens for the substrings “bc”, “da”, “d” and the
empty string ””.
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ab
c

ab a c da
b

ac

abc x x x x
dab x x x
ac x x x

This scale can be combined with the string context from which it is derived in
order to form a scaled context.

Definition 6 (scaled context with maximal substrings)
Let D = (O, Σ∗, d) be a string context. The scaled context that is derived from D
is defined by Kmax(D) = (O, Smax(D), I), where (o, s) ∈ I ⇐⇒ d(o) ⊇ s.

Example 5. The scaled context derived from the above string context and sub-
string scale is given by the following table.

ab
c

ab a c da
b

ac
1 x x x x
2 x x x
3 x x x
4 x x x

This scaled context is just a projection of the scale context in Section 2 over the
set of substrings Smax(D).

3.2 Completeness

An important question is: Did we loose something by retaining maximal sub-
strings only? More precisely, we have to show that the concept lattice has the
same extents, and equivalent intents. We first prove that every substring has a
maximal substring extension with the same cover.

Lemma 1. Let D be a string context. For all substring s ∈ S(D), there exists a
maximal substring m ∈ Smax(D) such that m is an extension of s, m ⊇ s, and
has the same cover, coverD(m) = coverD(s).

Proof: We prove by recurence that the lemma is true for every length of s
(denoted by |s|), starting with the longest (string length is bounded by k), and
decreasing it.

1. Base case: |s| = k.
� ∃t ∈ S(D) : t ⊃ s =⇒ s ∈ Smax(D).

2. General case: the lemma is assumed true for every substring longer than s.

– either ∀t ∈ S(D) : t ⊃ s⇒ coverD(t) �= coverD(s)
=⇒ s ∈ Smax(D),

– or ∃t ∈ S(D) : t ⊃ s ∧ coverD(t) = coverD(s)
=⇒ |t| > |s|
=⇒ ∃m ∈ Smax(D) : m ⊇ t ∧ coverD(m) = coverD(t)
=⇒ ∃m ∈ Smax(D) : m ⊇ s ∧ coverD(m) = coverD(s). �
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It follows immediately that every non-maximal substring attribute can be re-
placed by a maximal substring that contains it, hence no loss of information,
and that has the same cover, hence discriminating the same extents.

Theorem 1. The concept lattices of K(D) and Kmax(D) are equivalent for
conceptual navigation. They have the same extents, and intents are equivalent in
the sense that missing substrings in the latter case are redudant, i.e., included
in some maximal substring from the same intent.

For instance, the substring “ormal Contex” is replaced by “Formal Context”,
but “al Context” is maximal if it can be extended by either “Formal Context”
or “Logical Context” in different strings.

3.3 Conciseness and Efficiency with Suffix Trees

In order to evaluate the improvement of using maximal substrings, we have to
bound their number, and compare it with the set of all substrings. We also have
to compare the computation complexity for building the scaled context, because
a smaller context does not entails necessarily a more efficient computation.

It seems difficult to estimate precise complexities, given the definition of
Smax(D). However there exists a very interesting data structure for reasoning
and computing with sets of strings, namely suffix trees [Ukk95, Gus97]. The suf-
fix tree of a string is the compact lexical tree of all suffixes of this string, where
compact means that branches may be labelled by several characters, and nodes
have several children. Figure 1 displays the suffix tree of the string ”googol$”,
where $ is a special final character that is necessary in the computation of the
suffix tree. Each leaf represents a suffix, whose position in the string labels the
leaf (starting with position 0). Each node represents a repeated substring, whose
occuring positions are the leaf labels below this node. For instance, we can read
in Figure 1 that the word ”go” occurs at positions 0 and 3 in the string ”googol$”.
In addition suffix links point from a node n (representing a substring s) to an-
other node n′ (representing the first suffix of s, i.e., s minus its first character).
For instance, the suffix link in Figure 1 (dashed arrow) goes from the node ”go”
to the node ”o”.

However we are here interested in finding maximal substrings over several
strings, and so in building the suffix tree of a set of strings. This is an easy
generalisation of suffix trees [Gus97]. It suffices to end each string with a different
special character, and to concatenate them. A difference is that each leaf must
be labelled by a string in addition to a position so as to determine to which
string a suffix belongs to. Figure 2 displays the generalized suffix tree of the
set of strings in Example 1. In leaf labels, the first number identifies the string,
and the second number gives the suffix position in this string. The sets labelling
nodes are the cover of the substrings they represent; and black nodes correspond
to maximal substrings. The computation of these 2 informations is explained in
Section 4.2.
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Fig. 1. The suffix tree of the string “googol$”

A known result states that every maximal repeat is represented by a node in
the suffix tree (Lemma 7.12.1 in [Gus97]). These maximal repeats differ from
our maximal substrings in 2 ways:

1. a maximal repeat may occur in a single string at different positions, and in
this case cover a single object: these repeats are not maximal because they
can be replaced by the full string that contains them (same cover),

2. full strings (from the string context) may not be repeated, but are obviously
maximal substrings.

Proposition 1 (maximal substrings in suffix trees). The set of maximal
substrings forms a subset of the suffix tree nodes plus full strings.

A fundamental result of suffix trees is that the number of nodes (hence the num-
ber of maximal repeats) and the computation time are both in O(Σo∈O|d(o)|),
i.e., the cumulated size of all strings. This can be approximated as O(kn), if k
is the maximum length of strings, and n the number of strings.

Proposition 2 (number of maximal substrings). The number of maximal
substrings is in O(kn), i.e., a k-fold improvement compared to the naive scaling.

In the example of paper titles, this is about 2 orders of magnitude better. The
same factor is obtained when computing the concept lattice, or even squared for
algorithms that are quadratic in the number of attributes. About the complexity
of computing the scaled context with maximal substrings, we need to take into
account the selection of maximal substrings among suffix tree nodes, and the
computation of covers. We describe an algorithm in next section, and show its
complexity is in O(kn.ln(kn)), thus adding only an logarithmic factor to the
computation of the suffix tree.
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4 An Efficient and Incremental Algorithm Based on
Suffix Trees

As said in previous section, the maximal substrings of a string context is made
of full strings and a subset of the nodes of the suffix tree of all these full strings.
The first step is then to compute this suffix tree. We sketch in Section 4.1 the
well known Ukkonen’s algorithm, which can build such a suffix tree in an in-
cremental manner, and in linear time. In Section 4.2 we refine this algorithm in
order to determine which nodes of the suffix tree represent maximal substrings.
This requires the computation of substring covers, which is a useful informa-
tion per se in information systems (e.g., for computing answers to queries). The
complexity of this refined algorithm is given, as well as practical details on its
implementation and integration with the existing logical information system,
Camelis.

4.1 Ukkonen’s Algorithm for Computing Suffix Trees

The rough principle of Ukkonen’s algorithm is to have 3 gliding positions on a
string s (having length n): the position j of the suffix s[j, n] being added1, the
position i ≥ j of the next character to be read, and the position j ≤ p ≤ i that
matches the last node on the path s[j, i] in the suffix tree. Initially i and j are
set to 0, and p is the root. While the character s[i] can be read down the tree,
position i is incremented and p is updated accordingly. Otherwise a leaf labelled
by j is added to the node nd at the end of the path s[j, i − 1] (nd is created if
this path ends in the middle of a branch), position j is incremented, a suffix link
is followed from p in order to reach the path s[j + 1, i− 1], and if nd has been
created, a new suffix link is created from nd to the end of the new path. This is
repeated until all suffixes have been added. Because position i is always greater
or equal than position j, and at least one of these positions is incremented at
each step, the suffix tree can be computed in linear time with respect to the
length of s. This impressive result is achieved with the help of additional tricks,
which are given in detail in the litterature [Gus97, Ukk95].

4.2 Computing Covers and Maximality

We first give a few definitions and results to help navigating in suffix trees. In
these definitions we talk equivalently of nodes and substrings. For instance, we
can talk of the cover of a node, or we can talk about the node “ab” in Figure 2.

Lemma 2 (cover of a node). The cover of a suffix tree node is the set of
string identifiers that label the leaves below this node.

Definition 7 (right extensions of a node). The right extensions of a node nd
are the children nodes of nd. The substring nd is a proper prefix of every right
extension.

1 The notation s[a, b] denotes the substring of s from position a to position b.
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Fig. 2. The generalized suffix tree of the set of strings {“abc”, “dab”, “ac”}

Definition 8 (left extensions of a node). The left extensions of a node nd
are the antecedent nodes of suffix links ending at nd. The substring nd is a proper
suffix of every left extension.

Our objective is to compute the set of maximal substrings, along with their
cover. In Section 3.3 it was observed that a maximal substring is either a full
string, or a repeated substring such that every other substring that contains it
has a smaller cover. Therefore maximal leaves are those labelled with 0 as suffix
position (full strings); and maximal nodes are those labelled by a cover strictly
greater than any (left or right) extension.

Suppose we have the suffix tree for the i− 1 first strings of a string context,
enriched with covers and maximality, and we want to update the enriched suffix
tree with the string i. An important result can be summarized as “once maximal,
always maximal”.

Lemma 3. Once a node has been identified as maximal upon the addition of a
string, it will remain maximal upon the addition of any other string.

Proof: We prove the contraposition of this lemma. Suppose a node nd is not
maximal after inserting the i-th string, and already existed before this insertion.
This implies there is an extension nd′ of nd that has the same cover. Suppose
nd′ was created during the insertion of string i. This implies that the substring
represented by nd′ was not a repeated substring, while nd was. This means the 2
nodes had different covers, which contradicts the fact they have the same cover
after insertion of i. So nd and nd′ did exist, had the same cover, and nd′ was
an extension of nd. Therefore nd was not maximal before the insertion of the
string i. �

Therefore a node becomes maximal when adding string i if it is not yet maximal,
covers i, and has no extension covering i. From Lemma 2 the addition of string i
in a cover comes from the creation of a leaf labelled by i below this node.
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Modification 1. Ukkonen’s algorithm is modified so that each time a leaf is
added on node nd, then the string i is added to the cover of nd as well as all its
ancestors till the root. There are 2 cases about maximality:

1. if i already belongs to the cover of nd (due to the creation of a previous
leaf), then nd has a right extension that covers i, and so it is not maximal;

2. otherwise i does not belong to any extension of nd. First, nd is marked as
i-maximal, meaning that this node became maximal upon the insertion of
string i. Then any ancestor of nd that was marked i-maximal is unmarked
(this does not contradict Lemma 3 because unmarking occurs at the same
stage as marking).

Modification 2. A second modification of Ukkonen’s algorithm is necessary.
When a suffix link is created from some node nd′ to the node nd, then a leaf
has necessary been added to node nd′ (Ukkonen’s algorithm), and so i belongs
to the cover of nd′. As nd′ is a left extension of nd, it follows that nd must be
unmarked but only if it has been marked i-maximal.

The complexity of computing the enriched suffix tree is modified compared to
Ukkonen’s algorithm. This is due to the traversal of the ancestors of a node in
the first modification. Given the size of the suffix tree is in O(kn), its height is
in O(ln(kn)). This traversal is applied for each creation of a leaf, i.e. O(kn) times.
Hence the time complexity for computing the enriched suffix tree in O(kn.ln(kn)).

4.3 Practical Aspects

The above algorithm, based on Ukkonen’s algorithm, has been implemented and
integrated in Camelis

2, a logical information system [FR04]. Camelis makes
use of a toolbox of logic components, logic functors [FR02], amongst which the
functor String handles representation and reasoning on strings and substrings.
This functor has been extended with suffix tree algorithms so as to compute
the maximal substrings in an incremental way. The cumulated complexity of
a non-incremental algorithm would not be linear, but quadratic because of re-
peated computation of maximal substrings upon insertion of new strings. The
logic functor also makes it possible to compute the extension of a substring so
as to support navigation in Camelis, to remove strings from the string con-
text, and to manually hide maximal substrings when judged irrelevant by users
(customization). A concrete application example is given in the next section.

5 Example and Application-Specific Improvement

As an illustrative example of our approach, we consider the string context made
of the titles of all papers published at ICCS from 1993 to 2005, as they were
found on DBLP pages3. This string context contains n = 374 strings, whose
length is bounded by k = 140. For string contexts of this size, the worst case
number of substring attributes in the scaled context are the following.
2 http://www.irisa.fr/lande/ferre/camelis/
3 http://www.informatik.uni-trier.de/∼ley/db/conf/iccs/index.html
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Fig. 3. Navigation tree of maximal substrings in ICCS string context

all substrings (nk2) 7,330,400
maximal substrings (nk) 52,360

In the case of maximal substrings, the worst case number of substrings is more
sharply defined as the cumulated size of all strings, which is 21,412 in the ICCS
string context.

We applied our algorithm for computing all maximal substrings of the ICCS
string context. The computation time is a few seconds on a standard machine,
and the number of maximal substrings is only 3,816. This is to be compared with
569,676 substrings found with the naive approach. This low figure, compared to
the worst case, can partly be explained by the homogeneity of the string con-
text, where titles share many common keywords. The size of the scaled context,
i.e., the number of crosses, is 44,056; equivalently, objects have on average 117
attributes. This means that each title, whose average length is 57, contains on
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Fig. 4. Filtered navigation tree of maximal substrings in ICCS string context

average 117 maximal substrings. Even if this is small in comparison to k2 =
19, 600, this still seems a lot.

Figure 3 shows a navigation tree in Camelis made of these maximal sub-
strings, along with their object count. This tree contains several informative
substrings, and the tree structure reflects their containment relations4: e.g.,
“Concept”, “Conceptual”, “Concept Analysis”, “Formal Concept”, “Negation in
Concept”. But at the same time there are irrelevant substrings, e.g., “c”, “nce”,
and redundant substrings, e.g., “al Concept”and “n Concept” w.r.t. “Concept”.
The problem here is that the algorithm makes no assumption on the contents

4 In fact, it is a directed acyclic graph as a substring may be subsumed by several
substrings, but it is displayed as a tree in the graphical interface. This implies a
substring may occur at different places in the navigation tree.
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Fig. 5. Filtered navigation tree after selecting a substring in ICCS string context

of strings, and makes no difference between letters and spaces. However, word
boundaries are important for the readability and relevance of substrings for users.

We adapted the traversal of the navigation tree so as to allow applications to
define a filtering of this tree. The application must determine for each substring
which part is relevant. For instance, in the ICCS string context, this part goes
from the beginning of the first capitalized word to the end of the last capitalized
word, thus neglecting grammatical words at both ends: e.g., the relevant part of “al
Concept” is “Concept”. Then a substring is filtered out from the navigation tree
when its relevant part is equal to the relevant part of its parent node in the tree:
e.g., “al Concept” is filtered because it has the same relevant part as “ Concept”.
This filtering entails no change at all in the suffix tree, and all displayed substrings
are maximal substrings. The consequence is just that some substrings are skipped
in the navigation tree, but the containment ordering is kept.

A filtered navigation tree for the ICCS string context is displayed in
Figure 4. This time we get a much more readable and informative navigation
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tree. Note for instance how “Concept” is refined by “Concept Analysis”, “Con-
cept Graphs”, etc., and how “Concept Analysis” is refined by “Formal Concept
Analysis” and “Temporal Concept Analysis” (skipping “al Concept Analysis”).
Note also that full strings (prefixed by the keyword is) appear as maximal
strings, so that full titles can be accessed. After filtering, the number of sub-
strings is only 928 (vs 3,816). If only proper substrings are considered, i.e., if
full strings are excluded, this number is a mere 554 substrings. This is the same
order of magnitude as the number of objects. The following table summarizes
the decreasing of the number of substrings in successives approaches.

all substrings 569,676
maximal substrings 3,816
filtered maximal substrings 928
filtered maximal proper substrings 554

Navigation trees in above figures are dynamic. In conceptual navigation (a.k.a.
browsing), they play the same role as attribute lists, and shrink to a subset
of relevant substrings each time a substring is selected. Figure 5 displays the
shrinked navigation tree after the substring “Concept Graphs” has been selected.
Grey-colored substrings are those covering all selected strings: they make up the
intent of the current concept. Of course, it is possible to consult the extent of
the current concept as a list of titles (or full bibliographical references). Finally,
thanks to the logical nature of Camelis, it is also possible to use arbitrary
substrings in queries, even if they are not maximal.

6 Discussion

Our approach has no pretention w.r.t. Natural Language Processing (NLP). It
proves successful on the analysis of a set of paper titles, but it is difficult to say
how it would behave on more free text. Our purpose was to provide a solution
for analysing strings that is simple and generic (no a priori knowledge needed,
unlike in NLP), exhaustive (no arbitrary choices), and efficient (for actual use
in information systems). However, if linguistic knowledge is available, it can still
be used as a preprocessing stage before applying our algorithm: e.g., removal of
plurals, replacing words by their root or a dictionnay entry.

The string datatype can be seen as a logic, where formulas are sets of strings
and substrings, the deduction relation � is based on the string containment ⊇,
and disjunction � computes the maximal substrings shared by 2 strings. This
kind of logic can be used in the framework of Logical Concept Analysis (LCA)
[FR00, FR04], where intents are precisely computed by application of disjunc-
tion: int(O) =

⊔
o∈O d(o). The set of maximal substrings can thus be computed

by applying this disjunction on all subsets of objects in a logical context. A
similar approach based on pattern structures [GK01] has been applied on graphs
and subgraphs for analysing molecules [Kuz99]. These results could in principle
be applied on strings, as strings can be represented with graphs. However, the
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complexity of this approach is totally different because the disjunction opera-
tion must be applied in the best case once for each concept. This results in an
exponential complexity to be compared with the polynomial complexity of the
algorithm presented in Section 4. The equivalent of our approach to graphs (if
possible) would be to compute in a polynomial way the set of maximal sub-
graphs, i.e., all elements of closed subgraph sets [GK01], without computing the
concepts.

A logic, defined as a language of formulas (representation) partially ordered
by a subsumtion relation (reasoning), is definetely valuable for describing objects
in a natural way, querying a context in an expressive manner, and organizing
navigation features, as demonstrated by our numerous experiments with LIS.
However the use of logical disjunction for computing maximal features (e.g., sub-
strings, subgraphs) and concepts is untractable in general. Given the importance
of actually computing the concept lattice for many people, this may explain why
LCA has not been more widely accepted, while there is an obvious and shared
interest in exploiting various and richer datatypes. We hope the results pre-
sented in this paper for the string logic will improve its acceptability by the
FCA community.

A long-term objective is to design a genuine logical and conceptual navigation
for all sorts of datatypes. The results presented in this paper are a first step in
this direction, and a significant one if we consider that strings cover a large
part of many applications. An important way to reduce the problem is the shift
from the direct production of the logical concept lattice to the production of
maximal features that determine the same lattice. Indeed, producing the full
lattice apriori is not necessary, as experienced in LIS applications, and it is
not manageable in many real applications given its size (computation cost and
visualization). It seems sufficient to show neighbour concepts of the current
concept when browsing a context. Moreover the availability of maximal features
makes it possible to compute the logical concept lattice with regular algorithms.

In LIS applications, logics are formed by the composition of logic functors
[FR02] corresponding to various datatypes (e.g., strings, integers) and datatype
constructors (e.g., sum, tuples, sets). It seems promising to extend logic functors
so as to integrate the incremental computation of maximal features. This decom-
position allows for highly specialized data structures and algorithms
(e.g., suffix trees), and has been applied here for the string datatype.

7 Conclusion

We have defined scales of maximal substrings and their computation from multi-
valued contexts with string-valued attributes. For each string-valued attribute
such a scale is computed from a set of strings with the help of a suffix tree. Scales
of maximal substrings are proved complete w.r.t. the formation of concepts. The
use of suffix trees enables to bound their size by the cumulated size of strings
(kn), and to efficiently compute them (O(kn.ln(kn))).
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An algorithm is given as an adaptation of Ukkonen’s algorithm for computing
suffix trees. It has been integrated in logical information systems so as to support
logical and conceptual navigation. This is illustrated on the navigation among
ICCS papers through the automatic extraction of keywords from titles. We plan
to extend these results to other datatypes, like strings with gaps in patterns,
XML trees, and graphs, where the challenge is to compute maximal features
without having to build the concept lattice, and possibly in a polynomial way
like for substrings.
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Abstract. Formal Concept Analysis (FCA) is a natural framework for
learning from positive and negative examples. Indeed, learning from ex-
amples results in sets of frequent concepts whose extent contains only
these examples. In terms of association rules, the above learning strat-
egy can be seen as searching the premises of exact rules where the conse-
quence is fixed. In its most classical setting, FCA considers attributes as a
non-ordered set. When attributes of the context are ordered, Conceptual
Scaling allows the related taxonomy to be taken into account by produc-
ing a context completed with all attributes deduced from the taxonomy.
The drawback, however, is that concept intents contain redundant in-
formation. In this article, we propose a parameterized generalization of
a previously proposed algorithm, in order to learn rules in the presence
of a taxonomy. The taxonomy is taken into account during the compu-
tation so as to remove all redundancies from intents. Simply changing
one component, this parameterized algorithm can compute various kinds
of concept-based rules. We present instantiations of the parameterized
algorithm for learning positive and negative rules.

1 Introduction

Learning from examples is a fruitful approach when it is not possible to a priori
design a model. It has been mainly tried for classification purposes [Mit97].
Classes are represented by examples and counter-examples, and a formal model
of the classes is learned by a machine.

Formal Concept Analysis (FCA) [GW99] is a natural framework for learning
from positive and negative examples [Kuz04]. Indeed, learning from positive
examples (respectively negative examples) results in sets of frequent concepts
with respect to a minimal support, whose extent contains only positive examples
(respectively negative examples). In terms of association rules [AIS93, AS94],
the above learning strategy can be seen as searching the premises of exact rules
where the consequence is fixed. When augmented with statistical indicators like
confidence and support it is possible to extract various kinds of concept-based
rules taking into account exceptions [PBTL99, Zak04].

The input of FCA is a formal context that relates objects and attributes.
FCA considers attributes as a non-ordered set. When attributes of the context
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are ordered, Conceptual Scaling [GW99] allows the attribute taxonomy to be
taken into account by producing a context completed with all attributes deduced
from the taxonomy. The drawback is that concept intents contain redundant
information. In a previous work [CFRD06], we proposed an algorithm based on
Bordat’s algorithm [Bor86] to find frequent concepts in a context with taxonomy.
In that algorithm, the taxonomy is taken into account during the computation
so as to remove all redundancies from intents.

There are several kinds of association rules, and several related issues: e.g.
find all association rules with respect to some criteria, compute all association
rules with a given conclusion or premise. We propose a generic algorithm to
address the above issues. It is a parameterized generalization of our previous
algorithm. It learns rules and is able to benefit from the presence of a taxon-
omy. The advantage of taking a taxonomy into account is to reduce the size
of the results. For example, the attributes of contexts about Living Things are
intrinsically ordered 1. For a target such as “suckling”, a rule such as “Liv-
ing Things”∧ “Animalia” ∧ “Chordata” ∧ “Vertebrata” ∧ “Mammalia” →
“suckling” is less relevant than the equivalent rule “Mammalia” → “suckling”
where elements redundant with respect to the taxonomy have been eliminated.
The presented algorithm can compute various kinds of concept-based rules by
simply changing one component. We present two instantiations which find pos-
itive and negative rules. Positive rules predict some given target (e.g. predict a
mushroom as poisonous), while negative rules predict its opposite (e.g. edible).

The contributions of this article are twofold. Firstly, it formally defines FCA
with taxonomy (FCA-Tax) using the Logical Concept Analysis (LCA) frame-
work [FR04], where the taxonomy is taken into account as a specific logic. Sec-
ondly, it specifies a generic algorithm which facilitates the exploration of frequent
concepts in a context with taxonomy. Quantitative experiments show that taking
a taxonomy into account does not introduce slowdowns. Furthermore, the prun-
ing implemented by our algorithm related to the taxonomy can often improve
efficiency.

In the following, Section 2 formally defines FCA with taxonomy (FCA-Tax).
Section 3 presents the generalization of the algorithm described in [CFRD06]
to filter frequent concepts in a formal context with taxonomy. Section 4 shows
how to instantiate the algorithm to learn different kind rules. Section 5 discusses
experimental results.

2 A Logical Framework for FCA with Taxonomy

In this section, we formally describe Formal Concept Analysis with Taxonomy
(FCA-Tax) using the Logical Concept Analysis (LCA [FR04]) framework. We
first present an example of context with taxonomy. Then we briefly introduce
LCA, concept-based rules, and we instanciate LCA to FCA-Tax. A taxonomy
describes how the attributes of the context are ordered and thus a taxonomy is
a kind of logic where the subsumption relation represents this order relation.
1 http://anthro.palomar.edu/animal/table humans.htm
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Table 1. Context of threatened or endangered bird families in the USA
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Accipitridae • •
Alcedinidae • •
Alcidae • • • •
Anatidae • •
Cathartide • •
Charadriidae • • • • •
Corvidae • •
Drepanidinae • •
Emberizidae • •
Gruidae • • •
Icteridae • •
Muscicapidae • •
Strigidae • • • • • •
Tyrannidae • • • • •
Vireonidae • •

2.1 Example of Context with a Taxonomy

The context given Table 1 represents the observations of threatened and endan-
gered bird families. Data come from the web site of USFWS2 (U.S Fish and
Wildlife Service). The objects are bird families and each family is described by
a set of states and regions where specimens have been observed and by a status:
threatened or endangered . Note that in this context objects are elements of what
could be a taxonomy in another context. Figure 1 shows the taxonomy of states
and regions of USA.

The context given in Table 1 is the straightforward transcription of the infor-
mation found on the USFWS site. Note that it is not completed with respect to
FCA. For example object Accipitridae which has in its description the attribute
Florida has not the attribute Southeast . The information that an object has the
attribute Florida implies that it has the attribute Southeast is implicitly given
by the taxonomy. We have observed that this situation is quite common.

2.2 Logical Concept Analysis (LCA)

In LCA the description of an object is a logical formula instead of a set of
attributes as in FCA.

Definition 1 (logical context). A logical context is a triple (O,L, d) where
O is a set of objects, L is a logic (e.g. proposition calculus) and d is a mapping
from O to L that describes each object by a formula.
2 http://ecos.fws.gov/tess public/CriticalHabitat.do?listings=0&nmfs=1
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USA

Southeast

Mississipi Florida

NortheastGreat Lakes
Big Rivers

Mountain
Prairie

UtahArizona

Southwest Region 7

Alaska

Region 8

California Nevada

Pacific

MichiganOregonWashingtonHawai

Fig. 1. Taxonomy of USA states and regions

Definition 2 (logic). A logic is a 6-tuple L = (L,�,�,�,�,⊥) where

– L is the language of formulas,
– � is the subsumption relation,
– � and � are respectively conjunction and disjunction,
– � and ⊥ are respectively tautology and contradiction.

Definition 3 defines the logical versions of extent and intent. The extent of a
logical formula f is the set of objects in O whose description is subsumed by f .
The intent of a set of objects O is the most precise formula that subsumes all
descriptions of objects in O. Definition 4 gives the definition of a logical concept.

Definition 3 (extent, intent). Let K = (O,L, d) be a logical context. The
definition of extent and intent are:

– ∀f ∈ L ext(f) = {o ∈ O | d(o) � f }
– ∀O ⊆ O int(O) =

⊔
o∈O d(o)

Definition 4 (logical concept). Let K = (O,L, d) be a logical context. A log-
ical concept is a pair c = (O, f) where O ⊆ O, and f ∈ L, such that int(O) ≡ f
and ext(f) = O. O is called the extent of the concept c, i.e. extc, and f is called
its intent, i.e. intc.

The set of all logical concepts is ordered and forms a lattice: let c and c′ be two
concepts, c ≤ c′ iff extc ⊆ extc′ . Note also that c ≤ c′ iff intc � intc′ . c is called
a subconcept of c′.

The fact that the definition of a logic is left so abstract makes it possible
to accommodate non-standard types of logics. For example, attributes can be
valued (e.g., integer intervals, string patterns), and each domain of value can
be defined as a logic. The subsumption relation allows to order the terms of a
taxonomy.
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2.3 Concept-Based Rules

Definition 5 (concept-based rules). Concept-based rules consider a target
W ∈ L such that W is a logical formula which represents a set of objects,
ext(W ), that are positive (respectively negative) examples. Concept-based rules
have the form X → W , where X is the intent of a concept. A rule can have
exceptions. These exceptions are measured with statistical indicators like support
and confidence, defined below.

Neither FCA nor LCA take into account the frequency of the concepts they de-
fine. An almost empty concept is as interesting as a large one. Learning strategy,
however, is based on the generalization of frequent patterns. Thus, statistical in-
dicators must be added to concept analysis. There exists several statistical mea-
sures like support, confidence, lift and conviction [BMUT97]. In the following,
support and confidence are used to measure the relevance of the rules, because
they are the most widespread. However, the algorithm presented in this article
does not depend on this choice.

Definition 6 (support). The support of a formula X is the number of objects
described by that formula. It is defined as:

sup(X) = ‖ext(X)‖
where ‖Y ‖ denotes the cardinal of a set Y.

The support of a rule is the number of objects described by both X and W . It
is defined as:

sup(X →W ) = ‖ext(X) ∩ ext(W )‖
Definition 7 (confidence). The confidence of a rule X → W describes the
probability for objects that are described by X to be also described by W . It is
defined as:

conf(X →W ) =
‖ext(X) ∩ ext(W )‖

‖ext(X)‖
The support applies as well to concepts as to rules. In the case of concept it
introduces the notion of frequent concept as formalized by Definition 8.

Definition 8 (frequent concept). A concept is called frequent with respect to
a min sup threshold if sup(intc) is greater than min sup.

2.4 Formal Concept Analysis with Taxonomy

FCA-Tax is more general than FCA because the attributes of the context are
ordered. It can be formalized in LCA.

Definition 9 (taxonomy). A taxonomy is a partially ordered set of terms

TAX =< T,≤ >

where T is the set of terms and ≤ is the partial ordering. Let x and y be attributes
in T , x ≤ y means that y is more general than x.
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Example 1. In Figure 1, Hawai ≤ Pacific ≤ USA.

Definition 10 (predecessors, successors, Mintax). Let TAX =< T,≤ >
be a taxonomy and X in T be a set of terms.
The predecessors of X in the taxonomy TAX are denoted by

↑tax (X) = { t ∈ T | ∃x ∈ X : x ≤ t }

The successors of X in the taxonomy TAX are denoted by

succtax(X) = { t ∈ T | ∃x ∈ X : x > t ∧ (� ∃t′ ∈ T : x > t′ > t) }

The successors represented by succtax(X) are immediate ones only. succ+
tax(X)

is the transitive closure of succtax(X), i.e. all successors of X in the taxonomy.

Mintax(X) is the set of minimal elements of X with respect to TAX.

Mintax(X) = { t ∈ X | � ∃x ∈ X : x < t }

In fact, Mintax(X) is X minus its elements that are redundant with respect to
TAX.

Example 2. On the context of Table 1, with the taxonomy of Figure 1, examples
of predecessors, successors and Mintax are as follows:

– ↑tax ({Mississipi ,Arizona}) = {Mississipi ,Southeast ,Arizona,
Southwest ,USA}

– succtax({USA}) = {Pacific,Southeast ,GreatLakes/BigRivers,
Southwest ,Northeast ,Mountains/Prairie,Region7 ,Region8 }

– Mintax({Florida,Southeast ,USA}) = {Florida}
Definition 11 (Ltax). Let TAX =< T,≤ > be a taxonomy. Ltax = (Ltax,
�tax,�tax,�tax,�tax,⊥tax) is the logic of FCA-Tax, related to TAX:

– Ltax = 2T where T is the set of terms,
– �tax such that X � Y iff ↑tax (X) ⊇ ↑tax (Y ),
– �tax is ∪tax such that X ∪tax Y = Mintax(X ∪ Y ),
– �tax is ∩tax such that X ∩tax Y = Mintax(↑tax (X) ∩ ↑tax (Y )),
– �tax = {x ∈ T | ext({x}) = O}
– ⊥tax=Mintax(T ).

� and � follow the usage of description logics, where � (resp. �) corresponds to
intersection (resp. union) over sets of objects.

Example 3. Figure 2 shows examples of operations on the context of bird fami-
lies. The language, L is the powerset of attributes (1). Florida implies Southeast
in the taxonomy, thus all bird families observed in Michigan and Florida can also
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L = {{Hawai}, {Oregon}, {Pacific}, {Southwest}, ..., {USA}, (1)

{Hawai , Southwest}, ...}
{Michigan, Florida} � {Michigan, Southeast} (2)

{Michigan,Southeast} � {Florida} = {Michigan,Florida} (3)

{Mississipi} � {Florida} = {Southeast} (4)

� = {USA} (5)

⊥ = {Hawai , Washington, Oregon, Arizona, Michigan,Mississipi , (6)

Florida,Utah, Alaska, California,Nevada}

Fig. 2. Examples of operations on the attributes of the taxonomy of Figure 1

be said to have been observed in Michigan and Southeast (2). To be observed in
Florida is an information more precise than to be observed in Southeast, thus
only the attribute Florida is kept in (3). The fact that birds are observed in
Michigan or Florida can be generalized by birds which are observed in South-
east (4). The top concept contains only one attribute USA (5), and the bottom
concept all minimal attributes (6).

All notions defined in LCA apply in FCA-Tax, in particular extent, intent, and
concept lattice. Note that the intents of two ordered concepts c < c′ differ because
one or more attributes are added in int(c), or because an attribute of int(c′) is
replaced in int(c) by a more specific attribute in the taxonomy, or a combination
of both. FCA-Tax differs from FCA in that the intents of concepts in FCA-Tax
are without redundancy (see the use of Mintax in the definition of �).

Example 4. ext(Oregon, California) = {Alcidae, Strigidae}
int(Alcedinidae, Corvidae) = {Pacific, Endangered}
sup(Oregon, California→ Threatened) = 2
conf(California→ Threatened) = 0.5

Note in the example about the computation of intent that Corvidae has not
explicitly the property Pacific but the property Hawai. But in the taxonomy
the property Hawai implies the property Pacific.

3 A Parameterized Algorithm for Finding Concept-Based
Rules

In a previous article [CFRD06] we described an algorithm for finding frequent
concepts in a context with taxonomy. The algorithm is a variant of Bordat’s
algorithm [Bor86] which takes care of the taxonomy for avoiding redundant
intents. In this section, a generalization of this algorithm is described in order to
search concept-based rules. In a first step, the relation between frequent concepts
and rules is presented. In a second step, the parameterized algorithm with this
filter function is described.
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3.1 From Frequent Concepts to Rules

Relevant rules are rules that are frequently observed. In the general case, see for
example [PBTL99], all frequent rules are searched, without any constraint on the
premises and conclusions. However, in the learning case, either the premise or
the conclusion is fixed by the learning target. So, one searches for frequent rules
where conclusions or premises match the target. For instance, learning sufficient
conditions for a target W is to search frequent rules like X →W . For example, in
a context describing mushrooms it can be relevant to search properties implying
that a mushroom is poisonous, i.e. X → poisonous.

As explained in Section 2, the frequency of a rule is evaluated by a statis-
tical measure: the support. A rule cannot be more frequent than its premise
or its conclusion. Indeed, let c be a concept then sup(intc) ≥ sup(intc ∪W )
= sup(intc → W ). This implies that only the intents of frequent concepts are
good candidates to be the premises of the searched rules. Therefore, in order
to learn rules, the frequent concepts that are computed by the algorithm pre-
sented in [CFRD06] need to be filtered. Only most frequent concepts that form
relevant rules with respect to statistical measures are kept. Some statistical mea-
sures like the support, are monotonous. For instance, given two concepts c and c′,
c < c′ ⇒ sup(c) < sup(c′) holds. It means that if the support of a concept c is
lower than min sup, all subconcepts of c have a support lower than min sup.
Thus, it is not relevant to explore subconcepts of c.

A filter function, called FILTER, is defined in order to take into account
these observations. FILTER takes two parameters, two sets of objects: extc and
ext(W ). These two parameters are sufficient to compute all statistical measures
like support, confidence, lift and conviction as it is illustrated in Figure 3. Using
extc and ext(W ), we can compute extc ∪ ext(W ), extc ∩ ext(W ), and all com-
plements like O\extc, O\ (extc∪ext(W )). FILTER(extc, ext(W )) returns two
booleans: KEEP and CONTINUE. KEEP tells whether intc →W is a rele-
vant rule with respect to statistical measures. CONTINUE allows monotonous
properties to be considered. Indeed, CONTINUE tells whether there may be
some subconcept c′ of c such that intc′ →W is a relevant rule. Thus FILTER
gives four possibilities: 1) keep the current concept and explore subconcepts, 2)
keep the current concept and do not explore subconcepts, 3) do not keep the
current concept and explore subconcepts, 4) do not keep the current concept
and do not explore subconcepts. Section 4 illustrates on examples how these
four possibilities are used.

3.2 Algorithm Parameterized with Function FILTER

In the first part of this subsection, the data structures used in the algorithm
are briefly introduced. In the second part, the algorithm is described. In the last
part, the difference with the previous algorithm is given.

The algorithm uses two data structures: incrc of a concept c and Exploration.
incrc contains increments of a concept c. Apart from the top concept, each concept
s is computed from a concept p(s), called the predecessor of s. Let s be a concept
and p(s) be the predecessor of s then there exists a set of attributes, X , such that
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extc

O
ext(W )

conf(intc → W ) =
‖extc ∩ ext(W )‖

‖extc‖

conv(intc →W ) =
‖extc‖ ∗ ‖O \ ext(W )‖
‖extc ∩ (O \ ext(W ))‖

sup(intc →W ) = ‖extc ∩ ext(W )‖

lift(intc → W ) =
‖extc ∩ ext(W )‖
‖extc‖ ∗ ‖ext(W )‖

Fig. 3. Computing measures using the extents of a concept c and a target W

exts = extp(s) ∩ ext(X). We call X an increment of p(s), and we say that X leads
from p(s) to s. All known increments are kept in a data structure incrp(s) which is
a mapping from subconcepts to increments: s maps to X iff X leads to s. Notation
incrp(s)[s �→ X ] means that the mapping is overridden so that s maps to X .

Exploration contains frequent subconcepts that are to be explored. In
Exploration, each concept s to explore is represented by a triple: (exts �→ X ,
intp(s), incrp(s)) where exts = ext(intp(s) ∪ X) = extp(s) ∩ ext(X) and
‖exts‖ ≥ min sup, which means that X is an increment from p(s) to s.

An invariant for the correction of the algorithm is

∀c concept : incrc ⊆ {s �→ X | exts = extc ∩ ext(X) ∧ ‖exts‖ ≥ min sup} .

Thus, all elements of incrc are frequent subconcepts of c.
An invariant for completeness is

∀c, s concepts : (exts ⊂ extc ∧ ‖exts‖ ≥ min sup ∧ ¬∃X ⊂ T : s �→ X ∈ incrc)
=⇒ (∃s′ a concept : exts ⊂ exts′ ⊂ extc ∧ ∃X ⊂ T : s′ �→ X ∈ incrc ) .

Thus, all frequent subconcepts of c that are not in incrc are subconcepts of a
subconcept of c which is in incrc.

Algorithm Explore concepts allows frequent concepts of a context with tax-
onomy to be filtered with the generic function FILTER previously introduced.
Some examples of instantiation of the function FILTER are given in section 4.
The concept lattice is explored top-down, starting with the top of the lattice, i.e.
the concept labelled by all objects (i.e. the � concept) (line 2). At each iteration
of the while loop, an element of Exploration with the largest extent is selected
(line 4): (exts �→ X, intp(s), incrp(s)). This element represents a concept s which
is tested with the function FILTER (line 5). At line 7, the intent of s is com-
puted by supplementing (intp(s) ∪tax X) with successors of X in the taxonomy.
The redundant attributes are eliminated thanks to ∪tax.

Then the increment of s are computed; incrs is computed by exploring the
increments of p(s) (step 9) and the successors of the attributes of X in the
taxonomy (steps 10-15). Note that increments of p(s) can still be increments of s.
For instance, if p(s) > s, p(s) > s′, and s > s′, the increment of p(s) which leads
to s′ is also an increment of s that leads to s′. If these increments are relevant
with respect to FILTER, they are added to Exploration (lines 16-18).
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Algorithm 1. Explore concepts
Require: K, a context with a taxonomy TAX; and min sup, a minimal support
Ensure: Solution, the set of all frequent concepts of K with respect to min sup, and

FILTER
1: Solution := ∅
2: Exploration.add(O �→ �, ∅, ∅)
3: while Exploration 
= ∅ do
4: let (exts �→ X, intp(s), incrp(s)) = maxext(Exploration) in
5: (KEEP, CONTINUE) := FILTER(exts, ext(X))
6: if KEEP or CONTINUE then
7: ints := (intp(s) ∪tax X) ∪tax {y ∈ succ+

tax(X) | exts ⊆ ext({y})}
8: if CONTINUE then
9: incrs := {c �→ X | ∃c′ : c′ �→ X ∈ incrp(s) ∧ c = exts ∩ c′ ∧ ‖c‖ ≥ min sup}

10: for all y ∈ succtax(X) do
11: let c = exts ∩ ext({y}) in
12: if ‖c‖ ≥ min sup then
13: incrs := incrs[c �→ (incrs(c) ∪ {y})]
14: end if
15: end for
16: for all (ext �→ Y ) in incrs do
17: Exploration.add(ext �→ Y , ints, incrs)
18: end for
19: end if
20: if KEEP then
21: Solution.add(exts, ints)
22: end if
23: end if
24: end while

Finally if s is relevant with respect to FILTER, it is added to Solution
(line 21).

The difference between the algorithm in [CFRD06] and the algorithm pre-
sented here is the addition of the function FILTER that allows frequent con-
cepts to be filtered and exploration to be stopped. If function FILTER always
returns (KEEP = true, CONTINUE=true), then all frequent concepts are
eventually computed.

Example 5. Illustration of the computation of Exploration is as follows. The
taxonomy is presented in Figure 4; Figure 5 shows the explored lattice. We
assume min sup=3. The first 2 steps of computation are explained. Initially,
Exploration is:

– Exploration = {(O �→ �, ∅, ∅)}.
First step: the top of the lattice is explored, i.e. s=c0. Increments of s are

computed from the taxonomy only, as there is no predecessor concept:

– incrc0 = { {o3, o4, o7, o8, o9, o10} �→ {b}, {o1, o2, o7, o8, o10} �→ {a}, {o5,
o6, o7, o9, o10} �→ {c}}
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a cb

d e

root tax

Fig. 4. Taxonomy of the example Fig. 5. Concept lattice

– Exploration = {({o3, o4, o7, o8, o9, o10} �→ {b}, ∅, incrc0), ({o1, o2, o7, o8,
o10} �→ {a}, ∅, incrc0), ({o5, o6, o7, o9, o10} �→ {c}, ∅, incrc0)}.

Second step: an element of Exploration with the largest possible extent is
explored: s = c2, p(s) = c0. In order to compute incrc2 , we have to consider the
elements of incrc0 and the elements in the taxonomy.

– incrc2 = { {o7, o8, o10} �→ {a}, {o7, o9, o10} �→ {c, d}, {o8, o10} �→ {e}}///////////////
– Exploration = {( {o1, o2, o7, o8, o10} �→ {a}, ∅, incrc0), ({o5, o6, o7, o9,

o10} �→ {c}, ∅, incrc0), ({o7, o9, o10} �→ {c,d}, {b}, incrc2), ({o7, o8, o10}
�→ {a}, {b}, incrc2)}.

In the second step, attributes d and e are introduced as successors of attributes b,
and attributes a and c are introduced as increments of c0, the predecessor of c2.

Increment {e} is eliminated because it leads to an unfrequent concept. At-
tributes c and d are grouped into a single increment because they lead to the
same subconcept. This ensures that computed intents are complete.

3.3 Comparison with Bordat’s Algorithm

The algorithm presented in the previous section is based on Bordat’s algorithm.
Like in Bordat’s version, our algorithm starts by exploring the top concept. Then
for each concept s explored, the subconcepts of s are computed; this corresponds
to the computation of incrs. Our algorithm uses the same data structure to rep-
resent Solution, i.e. a trie. The differences between our algorithm and Bordat’s
are: 1) the strategy of exploration, 2) the data structure of Exploration and
3) taking into account the taxonomy.

In our algorithm,

1. We first explore concepts in Exploration with the largest extent. Thus, it is
a top-down exploration of the concept lattice, where each concept is explored
only once. Contrary to Bordat, it avoids to test if a concept has already been
found when it is added to Solution.

2. Whereas in Bordat’s algorithm Exploration is represented by a queue
that contains subconcepts to explore, in our version the data structure of
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Exploration elements is a triple: (exts �→ X , intp(s), incrp(s)) where incrp(s)

avoids to test all attributes of the context when computing increments of s.
Indeed, if an increment X is not relevant for p(s) it cannot be relevant for s,
because exts ⊂ extp(s) and thus (exts ∩ ext(X)) ⊂ (extp(s) ∩ ext(X)). Thus,
the relevant increments of the predecessor of s are stored in incrp(s) and are
potential increments of s. In Exploration, a concept cannot be represented
several times. When a triple representing a concept c is added to Explo-
ration, if c is already represented in Exploration, the new triple erases the
previous one.

3. The attributes can be structured in a taxonomy. This taxonomy is taken
into account during the computation of the increments and the intents. Us-
ing ∪tax instead of the plain set-theoretic union operation allows computed
intents to be without redundancy. Another benefit is that it makes com-
putation more efficient. For instance, when the taxonomy is deep, a lot of
attributes can be pruned without testing.

4 Instantiations of the Parameterized Algorithm

In the previous section, the presented algorithm is parameterized with a filter
function in order to permit the computation of concept-based rules in FCA-Tax.
In this section, we show two instantiations of the filter function to learning. The
first one allows sufficient conditions to be computed. Sufficient conditions are
premises of rules where the conclusion (the target), W , represents the positive
examples. In other words, the searched rules are of the form X →W .

The second one allows incompatible conditions to be computed. Incompatible
conditions are premises of rules where the conclusion (the target), W , is the
negation of the intent of positive examples. In other words, the searched rules
are of the form X → ¬W .

4.1 Computing Sufficient Conditions

In the generation of sufficient conditions, the learning objective, W , is the tar-
get of the rules to be learned. For computing sufficient conditions, one must
determine what conjunctions of attributes, X , implies W , i.e. the intents X of
concepts such that the rule X → W has a support and a confidence greater than
the thresholds min sup and min conf . Sufficient conditions can be computed
with the algorithm described in Section 3 that filters all frequent concepts of a
context, by instantiating the filter function with:

FILTERsc(exts, ext(W )) = (KEEP = sup(ints →W ) ≥ min sup ∧
conf(ints →W ) ≥ min conf,

CONTINUE = sup(ints →W ) ≥ min sup)

It implies three possible behaviours of the algorithm.
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1. The concept s is relevant, i.e. the rule ints → W has a support and a
confidence greater than the thresholds. s is a solution and has to be kept,
and its subconcepts are potential solutions and have to be explored. Thus
FILTERsc(exts) returns (true, true).

2. The concept s has a support greater than min sup but a confidence lower
than min conf . s is not a solution but the confidence is not monotonous
and thus subconcepts of s can be solutions. FILTERsc(exts) returns
(false, true).

3. The concept s has a support lower than min sup. s is not a solution. As the
support is monotonous, i.e. the support of a subconcept of s is lower than
the support of s, subconcepts of s cannot be solutions. FILTERsc(exts)
returns (false, false).

FILTERsc(exts, ext(W )) can be expressed in terms of extent by simply applying
the definitions of support and confidence seen in Section 2. The filter function
can therefore be defined by :

FILTERsc(exts, ext(W )) = (KEEP = ‖exts ∩ ext(W )‖ ≥ min sup ∧
‖exts ∩ ext(W )‖

‖exts‖ ≥ min conf,

CONTINUE = ‖exts ∩ ext(W )‖ ≥ min sup)

Note that it is easy to use other statistical indicators like lift or conviction, by
adding conditions in the evaluation of KEEP.

4.2 Computing Incompatible Conditions

In the case of incompatible conditions, the learning objective, W , is the negation
of the target of the rules to be learned. For computing incompatible conditions,
one must determine what conjunctions of attributes, X , implie ¬W . In other
words, one looks for the intents X of concepts such that the rule X → ¬W has
a support and a confidence greater than the thresholds min sup and min conf .
Incompatible conditions can be computed with the algorithm described in Sec-
tion 3 by instantiating the filter function with:

FILTERic(exts, ext(W )) = (KEEP = sup(ints → ¬W ) ≥ min sup ∧
conf(ints → ¬W ) ≥ min conf,

CONTINUE = sup(ints → ¬W ) ≥ min sup)

As for sufficient conditions, this can be expressed in terms of extents, using the
definitions of support and confidence. The filter function to compute incompat-
ible conditions can thus be defined by :

FILTERic(exts, ext(W )) = (KEEP = ‖exts ∩ (O \ ext(W ))‖ ≥ min sup ∧
‖exts ∩ (O \ ext(W ))‖

‖exts‖ ≥ min conf,

CONTINUE = ‖exts ∩ (O \ ext(W ))‖ ≥ min sup)
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5 Experiments

Experimental settings. The algorithm is implemented in CAML (a func-
tional programming language of the ML family) inside the Logic File System-
LISFS [PR03]. LISFS implements the notion of Logical Information Systems
(LIS) as a native Linux file system. Logical Information Systems (LIS) are based
on LCA. In LISFS, attributes can be ordered to create a taxonomy (logical
ordering). The data structures which are used allow taxonomies to be easily
manipulated. For more details see [PR03]. We ran experiments on an Intel(R)
Pentium(R) M processor 2.00GHz with Fedora Core release 4, 1GB of main
memory.

We tested the parameterized algorithm with two contexts: “Mushroom” and
“Java”. The Mushroom benchmark3 contains 8 416 objetcs which are mush-
rooms. The mushrooms are described by properties such as whether the mush-
room is edible or poisonous, the ring number, or the veil color. The context has
127 properties. The Java context4 taken from [SR06], contains 5 526 objects
which are the methods of java.awt. Each method is described by its input and
output types, visibility modifiers, exceptions, keywords extracted from its iden-
tifiers, and keywords from its comments. The context has 1 624 properties, and
yields about 135 000 concepts.

Quantitative Experiments. Many efficient algorithms computing association
rules exist5. None of them allow a taxonomy to be taken into account. We do
not pretend that our algorithm is faster. The objectives of this section are rather
to show 1) that our algorithm is reasonably efficient, 2) that given an algorithm
which searches for association rules, the additional mechanisms described in
Sections 3 and 4 do not cause any significant slowdown in the presence of a
taxonomy, and 3) that they can even improve efficiency in certain cases.

We evaluate our algorithm on the mushroom benchmark, computing frequent
concepts. It enables us to compare our algorithm’s performance with Pasquier
et al.’s CLOSE algorithm, using the figures published in Pasquier’s PhD the-
sis [Pas00]. For the same task, execution times are of the same order for both
algorithms. For instance, with min sup = 5% CLOSE computation time is about
210s and our algorithm computation time is 290.8s; with min sup = 20% CLOSE
computation time is about 50s and our algorithm computation time is only 26.2s.
Hence, even without a taxonomy our algorithm does not introduce any slowdown.

On the Java context, we measured the computation time of the frequent con-
cepts, in order to show the impact of the taxonomy on the computation. The tax-
onomy is derived, for the largest part, from the class inheritance graph, and, for
a smaller part, from a taxonomy of visibility modifiers that is predefined in Java.
The result is given in Table 2. The third column of that table contains the ex-
ecution times in seconds of algorithm when the taxonomy is taken into account.
The fourth column corresponds to the execution times when the context is a priori
3 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/
4 Available at http://lfs.irisa.fr/demo-area/awt-source/
5 Some of them are available on the FIMI web site http://fimi.cs.helsinki.fi/src
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Table 2. Number of concepts and execution times (in seconds) for different values of
min sup

min sup Number of concepts Execution time Execution time
(with taxonomy) (without taxonomy)

(%) (s) (s)

20 35 4.5 12.2
15 48 4.8 13.2
10 54 5.2 13.6
7.5 86 5.8 14.8
5 189 7.9 16.3

2.5 2300 55.0 54.1

completed with the elements of the taxonomy. When min sup = 5%, 189 frequent
concepts are computed in 8s with taxonomy, whereas they are computed in 16s
without taxonomy. When min sup = 2.5%, 2300 frequent concepts are computed
in 55s with taxonomy, whereas they are computed in 54s without taxonomy. It is
explained by the fact that the Java context has few very frequent concepts. Thus
pruning using the taxonomy when min sup is greater than 5% occurs very early in
the traversal of the concept lattice. For min sup = 2.5%, pruning are less impact,
computation time is therefore equivalent with or without taxonomy.

Note that from a qualitative point of view, with this context, using the tax-
onomy allows the number of irrelevant attributes in the intents to be reduced
by 39% for min sup = 5%.

6 Conclusion

In this article we have proposed an algorithm parameterized by a filter function
to explore frequent concepts in a context with taxonomy in order to learn asso-
ciation rules. We have described how to instantiate the filter function in order to
find premises of rules where the target are positive examples (sufficient conditions)
and negative examples (incompatible conditions). Quantitative experiments have
shown that, in practice, taking a taxonomy into account does not negatively
impact the performance and can even make the computation more efficient.

The advantage of the presented method is to avoid the redundancies that a
taxonomy may introduce in the intents of the frequent concepts.
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Abstract. Minimal generators (MGs), aka minimal keys, play an important role
in many theoretical and practical problem settings involving closure systems
that originate in graph theory, relational database design, data mining, etc. As
minima of the equivalence classes associated to closures, MGs underlie many
compressed representations: For instance, they form premises in canonical im-
plication/association rules – with closures as conclusions – that losslessly rep-
resent the entire rule family of a closure system. However, MGs often show an
intra-class combinatorial redundancy that makes an exhaustive storage and use
impractical. In this respect, the succinct system of minimal generators (SSMG)
recently introduced by Dong et al. is a first step towards a lossless reduction of
this redundancy. However, as shown elsewhere, some of the claims about SSMG,
e.g., its invariant size and lossless nature, do not hold. As a remedy, we propose
here a new succinct family which restores the losslessness by adding few further
elements to the SSMG core, while theoretically grounding the whole. Comput-
ing means for the new family are presented together with the empirical evidences
about its relative size w.r.t. the entire MG family and similar structures from
the literature.

1 Introduction and Motivations

Minimal generators (MGs) [1], aka minimal keys, play an important role in many the-
oretical and practical problem settings involving closure systems that originate in graph
theory, database design and data mining, to cite but a few. Standing at the “antipodes”
of the closures within their respective equivalence classes in the Boolean lattice [2] –
MGs are the smallest elements of a class while the closures are the largest – they help
delimit the classes and hence ease their detection/traversal.

From a computational viewpoint, the MG set is often the intermediate step in the
construction of structures that are either larger or lay higher in the Boolean lattice:
the frequent itemset family [3], frequent closed itemset (CI) family [4,5], an iceberg
lattice [6], etc. Underlying their computational importance is a structural property of the
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MG set, i.e., its order ideal shape [5]. Indeed, the MGs are the first elements of their
respective equivalence classes to be reached by a breadth-first climb in the Boolean
lattice. This fact is essentially exploited both by level-wise [4,7] and depth-first [8]
itemset mining algorithms in achieving better performances.

Beside their impact on computation and efficiency, the use of MGs brings gains on
the semantic level, especially in decision support environments (e.g., medical diagno-
sis). As they are usually strictly smaller than the closures (unless themselves closed),
MGs offer minimal combinations of tests/exams/answers necessary to identify a class
of situations and hence reduce the economic cost of the decision process. For example,
they were shown to be highly instrumental in applications involving rule induction and
classification [8].

On the structural side, various concise representations of the frequent itemset family
have been defined in terms of MGs [9,10,11]. More interestingly, MGs underly a variety
of compact subsets of the implication/association rule families of a context [1,12,13],
which are hence called by some generic bases. Traditionally, a generic basis is con-
sidered as an irreducible nucleus of the underlying rule family, although some redun-
dancy clearly persists. In fact, given two MGs g1 and g2 of the same equivalence class,
there is a one-to-one correspondence between rules of the basis involving g1 and those
involving g2.

In this respect, a study of intra-class redundancies in MGs was initiated by Dong et
al., who recently proposed a way to derive MGs from other ones in the same equiva-
lence class [14]. The overall reduction principle may be grossly summarized as follows:
an arbitrary total order is defined on the itemset family and the unique minimal mem-
bers of the respective equivalence classes are kept. This results in a split of the global
MG family into succinct and redundant parts. Thus, the succinct system of minimal
generators (SSMG) was introduced as a concise representation from which the entire
MG family can be retrieved without any information loss.

However, contrary to the authors’ claim, the SSMG as defined in [14] proved to
be loss-prone, i.e., in some cases a priori redundant MGs are impossible to derive.
Furthermore, the different SSMGs of a context (emerging through different orders)
do not necessarily share the same size, again contradicting what was stated in [14].
As an attempted improvement on both issues, a new construct was hence proposed by
Hamrouni et al. in [15]. Unfortunately, the new family lost the order ideal structure
what greatly complicates its extraction.

In this paper, we propose a third system that overcomes the worst limitations of
the previous ones. We present its definition and show that it preserves the precious
order ideal property together with further structural properties that underly a lossless
reduction mechanism. The presentation is organized as follows: the next section de-
fines the basic constructs to be used throughout the remainder of the text. Section
3 is a detailed study of the SSMG as defined by Dong et al., whereas Section 4
sketches that of Hamrouni et al. Section 5 expands on our own definition as well
as its structural properties. An algorithm extracting the family is sketched in Section
6, while the empirical evidences about the utility of the approach is provided in
Section 7.
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2 Basic Concepts

In this section, basic constructs used in the remainder of the paper are presented.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triplet K =
(O, I,R), where O represents a finite set of objects, I is a finite set of items and R
is a binary (incidence) relation (i.e.,R⊆O × I). Each couple (o, i) ∈R indicates that
the object o ∈ O contains the item i ∈ I.

Example 1. Consider the extraction context in Table 1 where O = {1, 2, 3, 4} and I =
{a, b, c, d, e, f, g}. The couple (2, d) ∈ R since it is crossed in the matrix.

Table 1. An extraction context K

a b c d e f g
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × × ×

For arbitrary sets X ⊆ I and Y ⊆ O, the following derivation operators are defined
[16]:

- X ′ = {o ∈ O | ∀ i ∈X , (o, i) ∈ R},
- Y ′ = {i ∈ I | ∀ o ∈ Y , (o, i) ∈ R}.

Let ′′ be the resulting closure operator on (2I ,⊆). Once applied, this operator induces an
equivalence relation on 2I portioning it into distinct subsets called equivalence classes
[3]. In the remainder, the latter will be denoted γ-equivalence classes. Elements of each
γ-equivalence class share the same closure. The largest one is called a closed itemset
(CI) [4] while smallest ones are called minimal generators (MGs) [1]. The notions of
closed itemset and of minimal generator are defined as follows:

Definition 2. (CLOSED ITEMSET) An itemset I ⊆ I is said to be closed iff I ′′ = I .

Example 2. Given the extraction context depicted by Table 1, the itemset cdeg 1 is a
closed itemset since it is the maximal set of items common to the set of objects {1, 4}.
The itemset cdg is not a closed itemset since all objects containing cdg also contain the
item e.

Definition 3. (MINIMAL GENERATOR) An itemset g ⊆ I is said to be a minimal gen-
erator (MG) of a CI f iff g′′ = f and � g1 ⊂ g s.t. g′′

1
= f .

The set of the MGs associated to a CI f (resp. an extraction contextK) will further be
denoted MGf (resp.MGK).

1 We use a separator-free form for the sets, e.g., the set cdeg stands for {c, d, e, g}.
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Example 3. Consider the CI cdeg described by the previous example. cdeg has dg as a
MG. Indeed, (dg)′′ = cdeg and the closure of every subset of dg is different from cdeg.
Indeed, (∅)′′ = c, (d)′′ = cde and (g)′′ = cg. cdeg has also another MG which is eg. Hence,
MGcdeg = {dg, eg}. cdeg is then the largest element of its γ-equivalence class, whereas
dg and eg are the smallest ones. All these itemsets share the set of objects {1, 4}.
Since in practice, we are mainly interested on itemsets that occur at least in a given
number of objects, we introduce the notion of support.

Definition 4. (SUPPORT) The support of an itemset I ⊆I, denoted by Supp(I), is equal
to the number of objects in K that contain I . I is said to be frequent in K if Supp(I) is
greater than or equal to a minimum support threshold, denoted minsupp.

Example 4. Consider the itemset cf of the extraction context depicted by Table 1. Both
objects 1 and 3 contain cf. Hence, Supp(cf ) = 2.

For minsupp = 1, Table 2 shows, for each frequent CI, its MGs and its support value.

Table 2. The frequent CIs extracted from K and for each one, the corresponding MGs and support

Frequent CI MGs Support

1 c ∅ 4
2 abc a, b 3
3 cde d, e 3
4 cg g 3
5 cfg f 2
6 abcde ad, ae, bd, be 2
7 abcg ag, bg 2
8 abcfg af, bf 1
9 cdeg dg, eg 2
10 cdefg df, ef 1
11 abcdeg adg, aeg, bdg, beg 1

To the best of our knowledge, only two approaches were proposed dealing with the
succinct system of minimal generators. We will scrutinize the main characteristics of
both approaches. Then, we will concentrate on our new approach towards a lossless
reduction of the minimal generator family while preserving the order ideal property.

3 The Original Definition

We present the original definition of the succinct system of minimal generators (SSMG)
introduced in [14] 2. We then clarify the aspects of the definition that remained unclear
and show its flaws.

2 Please notice that we mainly refer to the SSMG MINER algorithm proposed by the authors.
In fact, the concrete examples of its function provided by the authors are the only source of
precise information about several aspects of the target structure.
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3.1 Original Definition

In [14], Dong et al. showed that the minimal generator (MG) set may contain redundant
information as some MGs associated to a CI can be derived from other ones by a subset
substitution process. They hence tried to remove the redundancy within the MG set and
to achieve a succinct representation of MGs. Thus, Dong et al. introduced the succinct
system of minimal generators (SSMG) as a concise representation of the MG set. The
main idea was then to remove the redundant information by choosing one (e.g. the
smallest w.r.t. a given total order) MG of a CI and to elect it as its representative MG,
and discarding those containing at least a non-representative MG [14]. The purpose is
to only maintain, in each γ-equivalence class, minimal generators that cannot be derived
from other ones belonging to the same γ-equivalence class. The authors hence proposed
to set up a relation between itemsets. This relation is defined as follows:

Definition 5. Let f be a closed itemsets. Let X and Y be two itemsets. X and Y are
called f -equivalent, denoted X ≈f Y , if:

(i) X and Y are two MGs of a CI f1 s.t. f1 ⊂ f .
(ii) X can be obtained from Y by replacing a subset Z1 of X (Z1 ⊂ X) by a subset

Z2 of Y (Z2 ⊂ Y ) s.t. Z1 ≈f Z2.

Example 5. To illustrate this definition, consider the extraction context in Table 1. The
relation between itemsets given in the case (i) is verified by a and b w.r.t. the CI abcde.
Indeed, both are MGs of abc which is included in abcde. Hence, a ≈abcde b. That of
the case (ii) is satisfied by ad and bd also w.r.t. the CI abcde. Indeed, by replacing a by
b in ad, we obtain bd. This replacement is correct since a ≈abcde b.

Surprisingly enough, ≈f is not an equivalence one since the transitivity property is
not fulfilled, as this will be shown in Subsection 3.3. Dong et al. aimed at using this
relation to split the MGs associated to a given CI into different equivalence classes. To
avoid confusion with the γ-equivalence classes induced by the closure operator ′′, the
latter will be denoted σ-equivalence classes. The achievement of the goal of deriving
a minimal non-redundant subset of MGs is achieved by only maintaining one MG for
each σ-equivalence class. The choice of the representative member of a σ-equivalence
class is of paramount importance. Dong et al. proposed to freely choose a representative
MG for the smallest CIs. For the other CIs, the authors proposed to choose one of the
canonical MGs, i.e., those that do not contain any non-representative MG of a smaller
CI. Even though the authors do not give a precise way to choose the representative MG,
the examples of the paper indicate that shorter sets are considered as smaller and hence
favored [14]. In other words, the cardinality of MGs constitutes the first criterion when
choosing a representative MG among a set of canonical ones belonging to the same
σ-equivalence class.

3.2 Unveiling Imprecise Aspects

Several aspects remain unclear in the presentation of the SSMG in [14]. For instance,
the selection of the representative itemset for each closure seems to be defined procedu-
rally rather than analytically: A climb in the Boolean lattice is used to guide the choice
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which is some way randomly performed for the minimal closed sets. On upper levels of
the closed itemset lattice, the representative is chosen among the sets that are canonical
w.r.t. already fixed part of the representative MG family (thus enforcing the order ideal
structure of the target SSMG). After cross-checking with the algorithmic description,
it becomes clear that a global order on items is used which makes all the choices on the
lowest level deterministic. Moreover, the choice among canonicals on upper levels is
fixed by a preference for smaller-size sets. The following definition of a total order on
itemsets summarizes this:

Definition 6. (TOTAL ORDER RELATION) Let � be a total order relation among item
literals, i.e., ∀ i1, i2 ∈ I, we have either i1 � i2 or i2 � i1. This relation is extended
to also cope with itemsets of different sizes by first considering their cardinality. This is
done as follows: Let X and Y be two itemsets and let |X | and |Y | be their respective
cardinalities. We then have:

– If |X | < |Y |, then X ≺ Y .
– If |X | = |Y |, then X and Y are compared using the lexicographic order.

Example 6. If we consider the alphabetic order on items as the basis for the total order
relation � on itemsets 3, then:

- |d| < |be| =⇒ d ≺ be.
- abd � abe⇐⇒ abd ∪ {c} � abe ∪ {c} (i.e., abcd � abce).

Please notice that the cardinality factor preserves the spirit of MGs as the smallest
itemset in an γ-equivalence class is necessarily a MG. Three categories of MGs emerge
[15]:

Definition 7. (MINIMAL GENERATORS CATEGORIES) The set MGf , of the MGs
associated to a CI f , can be portioned into three distinct subsets as follows:

1. MGrepf = {g ∈ MGf | � g1 ∈ MGf s.t. g1 ≺ g}, hence it contains the smallest
MG, given a total order relation �, which constitutes the representative MG of f .

2. MGcanf = {g ∈MGf | g /∈ MGrepf , ∀ g1 ⊂ g, g1 ∈ MGrepf1 with f1 = g′′1},
hence it contains canonical MGs of f . A canonical MG is not the smallest one in
MGf and, hence, is not the representative MG of f . Nevertheless, all its subsets
are the representative MGs of their respective closures.

3. MGredf = {g ∈MGf | ∃ g1 ⊂ g, g1 /∈MGrepf1 with f1 = g′′1}, hence it contains
the redundant MGs of f .

It was proven in [15] that the subsets of a representative MG are also representative
ones. Indeed, the admission of the contrary, i.e., the existence of a subset which is not a
representative, would lead to a contradiction with the minimal status of a representative
MG. A MG is said to be succinct if it is either a representative or a canonical one [14].
Hence, the set MGsucf , composed by the succinct MGs associated to the CI f , is

3 In the remainder of the paper, we will only mention the criterion used to order items (alphabetic
order, ascending support order, etc). The latter is then extended to be the total order relation
on itemsets.
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equal to the union of MGrepf and MGcanf : MGsucf = MGrepf ∪ MGcanf =
{g ∈MGf | ∀ g1 ⊂ g, g1 ∈MGrepf1 with f1 = g′′1}. The setMGsucK of the succinct
MGs that can be extracted from a contextK is then an order ideal (or down-set) of (2I ,
⊆) [15] 4.

Example 7. Consider the extraction context K depicted by Table 1 and the alphabetic
order be the total order relation �. This relation is used to sort the MGs associated to
the CIs of Table 2. Note that for 11 CIs, there are 23 MGs, from which only 13 are
succinct ones (11 are representative MGs and only 2 are canonical ones and which
are b and e). The MG ad is a representative one since it is the smallest MG w.r.t. �,
among those of abcde. Indeed, ad � ae, ad � bd and ad � be. The MG e is not the
representative of its CI cde since d � e. Nevertheless, its unique subset (i.e., ∅) is the
representative MG of its CI c. Hence, e is a canonical MG. Finally, the MG bdg is
a redundant one since at least one of its subsets is not a representative MG (bg, for
example).

The definition of a succinct system of minimal generators (SSMG) according to Dong
et al. is as follows:

Definition 8. A succinct system of minimal generators (SSMG) w.r.t. a total order re-
lation �, consists of, for each closed itemset, the representative minimal generator and
a possibly void set of canonical minimal generators.

Noteworthily, for a given extraction context, there may be several SSMGs depending
on the choice of the order relation � (e.g., the extraction context shown in Table 3
(left)). It is also important to point out that the SSMG is clearly a generalization of the
clone items framework which focusses on items playing symmetric roles within CIs
[18]. Indeed, instead of simple items, the SSMG considers subsets of items.

3.3 Problems in the Original Definition

In [14], the authors made the following claims:

Claim 1: A SSMG is a lossless representation of the MG set, i.e., if g is a redundant
MG, then g can be inferred from the SSMG without loss of information.

Claim 2: The cardinality of a SSMG is invariant w.r.t. the considered total order
relation �.

To infer the redundant MGs of each γ-equivalence class, Dong et al. proposed to
replace the subsets (one or more) of its succinct MGs by non-representative MGs hav-
ing, respectively, the same closures as those of the replaced subsets [14]. For example,
the redundant MG bdg, extracted from the context in Table 1, can be inferred from the
succinct MG adg by replacing its subset ad by bd (since both MGs ad and bd have the
same closure (cf. Table 2)).

To be satisfied, both claims closely rely on how maintaining representative members
of the different σ-equivalence classes, from where the remainder can be derived using

4 This interesting property allowed us to propose an efficient algorithm to extract the SSMG
according to the definition of Dong et al. (see [17] for more details).
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the relation ≈f . However, localizing such members by pruning redundant elements,
containing non-representative subsets, can lead to:
• An σ-equivalence class without representative member: It is the case of the σ-

equivalence class S1 = {ecf, edf, acb, abd, abf, cbf, bdf} associated to the closed itemset
eacbdf (cf. Table 3 (left) for the ascending support order). Indeed, each element of
this σ-equivalence class contains at least a non-representative MG. Such σ-equivalence
class will not be taken into account and all its elements will then not be derived, which
presents a loss of information, in the contrary to the statement of Claim 1.
• An σ-equivalence class with more than one candidate for being the representative

member: It is the case of the σ-equivalence class S2 = {bdf, bda, bfa, bfc, bac, dfe,
fce} associated to the closed itemset bdface (cf. Table 3 (left) for the descending sup-
port order). Indeed, bdf, bda and bfa have all their subsets as representative MGs. Even
one can choose the smallest candidate and set it as the representative member, the def-
inition given by Dong et al. lacks the important part allowing to delete the remaining
candidates.

It is also worth noting that the elements of S1 and S2 are exactly the same while
being sorted according to two different order relations. In S1, there is no representative
member while in S2, there are three possible. This fact shows that the cardinality of
the SSMG closely depends on the selected total order relation, in the contrary to the
statement of Claim 2.

In addition, as mentioned in Subsection 3.1, the application of the relation ≈f does
not induce an equivalence relation on the minimal generator set of a CI. Indeed, if
we consider the extraction context sketched by Table 1 and the CI abcde, we have
ad ≈abcde bd ≈abcde be but ad �≈abcde be (cf. Table 2). Hence, this relation is not an
equivalence one since the transitivity property is not fulfilled.

4 The Improvement of Hamrouni et al.

In this section, we describe the improved SSMG defined in [15].

4.1 Redefinition of the Succinct System of Minimal Generators

In their attempt to fix the main flaws of the original SSMG, the authors proposed a
relation, denoted �, allowing to divide the set of MGs associated to a given closed
itemset (CI) f into σ-equivalence classes via a substitution process. The latter uses a
substitution operator denoted Subst allowing to replace a subset of an itemset X , say
Z1, by another itemset Z2 belonging to the same γ-equivalence class as Z1 (i.e., Z ′′

1 =
Z ′′

2 ). This operator works as follows: Subst(X , Z1, Z2) = (X\Z1)∪Z2. It was shown in
[15] that X and Subst(X , Z1, Z2) have the same closure.

For each γ-equivalence class C (or equivalently, for each CI f ), the substitution
operator induces an equivalence relation on the set MGf of the MGs of f . The concept
of minimal generators redundancy within each σ-equivalence class is then defined as
follows.

Definition 9. (MINIMAL GENERATORS REDUNDANCY) Let g and g1 be two MGs
belonging to the same γ-equivalence class.
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• g is said to be a direct redundant (resp. derivable) with respect to (resp. from) g1,
denoted g1 � g, if Subst(g1, g2, g3) = g with g2 ⊂ g1 and g3 ∈MGK s.t. g′′3 = g′′2 .
• g is said to be a transitive redundant with respect to g1, denoted g1 � g, if it exists

a sequence of n MGs (n ≥ 2), gen1, gen2, ..., genn, such that geni � geni+1 (i ∈
[1..(n-1)]) with gen1 = g1 and genn = g.

Property 1
• The relation � is reflexive, symmetric but not necessarily transitive.
• The relation � is reflexive, symmetric and transitive.

According to Definition 9, if g ∈ MGf , then the σ-equivalence class of g, denoted by
[g], is the subset of MGf consisting of all elements that are transitive redundant w.r.t. g.
In other words, we have: [g] = {g1 ∈MGf | g � g1}. To uniquely define a succinct MG
in each σ-equivalence class, the authors adopted the same total order relation described
in Definition 6. Its smallest MG will then be considered as the succinct MG. While the
other MGs will be tagged as redundant MGs.

Example 8. Consider the extraction context K depicted by Table 1. The total order
relation � is set to the alphabetic order. The MG adg is a succinct one, since it is
the smallest MG, w.r.t. �, among those of abcdeg. Indeed, when extracting the first
σ-equivalence class associated to abcdeg, the whole MG set associated to abcdeg is
considered. We then have: adg � aeg, adg � bdg and adg � beg. The MG aeg is a
redundant one since Subst(adg, ad, ae) = aeg ∈ MGabcdeg (adg � aeg and, hence, adg
� aeg). It is the same for the MGs bdg and beg since adg � bdg and adg � beg.

The succinct system of minimal generators (SSMG) is then redefined as follows:

Definition 10. (SUCCINCT SYSTEM OF MINIMAL GENERATORS) A succinct system
of minimal generators (SSMG) is the set of all succinct MGs of the CIs.

Since the definition of the relation � is independent from any adopted total order re-
lation, the different SSMGs that may be drawn from a given extraction context share
the same size. More interestingly, the SSMG becomes a lossless representation of the
MG set. Hence, the derivation of the whole set of redundant MGs is ensured to be com-
plete. The impact of the newly defined SSMG on generic bases of association rules is
discussed in [19].

4.2 Problems in the Redefinition

Unfortunately, the approach given in [15] still presents some drawbacks. For example,
the interesting order ideal property is not preserved. Indeed, if we consider the extrac-
tion context given in Table 3 (left) and the ascending support order as a total order
relation, the MG ecf will be characterized as a succinct MG since it is the smallest
one in its σ-equivalence classes. However, the subset cf of ecf is not the smallest one
in its γ-equivalence class (or equivalently, is not a representative MG w.r.t. the orig-
inal definition given by Dong et al.). Hence, additional tests have to be performed to
guess whether a MG is a succinct one or not. Thus, the compaction of the SSMG is
conditioned by an exhaustive calculation of substitutions between MGs.
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Table 3. (left) An extraction context K′. (right) The CIs extracted from K and for each one,
the corresponding MGs for different total order relations. The succinct MGs, according to the
original definition of Dong et al., are indicated with bold letters. Those, w.r.t. the definition of
Hamrouni et al., are underlined. Intersecting elements are thus in bold letters and underlined.

a b c d e f
1 × ×
2 × × ×
3 × ×
4 × × × ×
5 × × × × × ×
6 × ×
7 × ×
8 × ×
9 × × ×

alphabetic order ascending support order descending support order

CI MGs CI MGs CI MGs
1 ∅ ∅ ∅ ∅ ∅ ∅
2 a a a a a a
3 b b b b b b
4 c c c c c c
5 d d d d d d
6 be e eb e be e
7 f f f f f f
8 ab ab ab ab ba ba
9 acf ac, af , cf acf ac, af , cf fac fa, fc, ac
10 ad ad ad ad da da

11 abcdef ae, abc, abd, abf,
acd, adf, bcf, bdf,
cdf, cef, def

eacbdf ea, ecf , edf, acb,
acd, abd, abf,
adf, cbf, cdf, bdf

bdface ae, bdf , bda, bfa,
bfc, bac, dfa, dfc,
dfe, dac, fce

12 bcde bc, bd, ce, de ecbd ec, ed, cb, bd bdce bd, bc, de, ce
13 bf bf bf bf bf bf
14 cd cd cd cd dc dc
15 df df df df df df
16 bef ef ebf ef bfe fe

5 A New Succinct Minimal Generator Family

The idea behind our own definition is to “repair” the flaws in the proposal of Dong et al.
We start with a summary of the relative merits of both SSMG systems which motivates
the developments presented in the remainder of the paper.

5.1 Analysis

First, both definitions rely on the same substitution mechanism which amounts to a
special case of the well-known Armstrong axiom of pseudo-transitivity [20]:

X → Y ; WY → Z

WX → Z
.

In the substitution used by Dong et al. and later formalized by Hamrouni et al., the
following constraints on the above general rule apply: (i) WY , X and Y are MGs,
(ii) X and Y belong to the same γ-equivalence class (hence Y → X), and (iii) Z is
obviously the closure of WY .

Next, Dong et al. looked for a classical way to reduce a set, i.e., by breaking it
into equivalence classes that are further shrunk to a unique, representative, element.
Thus, they based their system definition on a substitution-based ≈f relation which,
although≈f wrongfully assumed to be an equivalence, did not result in a major flaw in
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the construction of the SSMG since a correct equivalence could be easily derived (as
done by Hamrouni et al.). Independently, in the original definition of their SSMG, the
authors put, implicitly, the requirement for it being an order ideal (through the definition
of a canonical element). We have shown above that this ideal can be assimilated to a
total order on itemsets, itself induced by an order on items. The exact composition of
the ideal, however, depends strongly on the chosen total order: different orders could
result in different sets becoming representative and canonical.

What Dong et al. seem to have miscalculated is the interplay between the ideal and
the partition of the Boolean lattice into substitution-based σ-equivalence classes. In-
deed, they hastily concluded that whatever the order, there will always be at least one
canonical element per σ-equivalence class, which is of course wrong. Moreover, their
claim of invariance for the SSMG size upon the choice of the total order seems to
come from either (i) belief that there will be a unique canonical element in each σ-
equivalence class, also wrong, or (ii) a discrepancy between the analytical description
and the SSMG MINER algorithm which clearly keeps all the canonical elements that
are found.

To keep the basic idea of finer σ-equivalence classes of MGs, Hamrouni et al. pro-
posed a straightforward remedy of some unfortunate repercussions. Their own defini-
tion relies on an explicit identification (and exhaustive substitution-based computation!)
of the same σ-equivalence classes as in Dong et al. The novelty in their work is the
choice of the unique class member to keep in the SSMG, which has been disconnected
from any order. This brought a constant size to the system, but also made it lose its
order ideal structure, and hence, the necessity of more extensive computation effort in
the construction of the system, in particular, for testing reducibility between MGs.

A first observation is that three different phenomena interact in the above definitions:
the Armstrong axiom of pseudo-transitivity, or substitution, the minimal generator sta-
tus of a set within its γ-equivalence class which induces an order ideal of its own, and
an additional ordering on the Boolean lattice of itemsets which induces a different, yet
somehow connected to the previous one, order ideal, made of the representative item-
sets. The latter ideal is completed with its “shell” of canonical elements which constitute
its outside frontier, or negative border (actually a subset of it), and the result is another,
a bit larger ideal combining both sorts of MGs. Our initial analysis is that it is impossi-
ble to always have all three constructs “aligned”, i.e., that all substitution-based classes
of MGs intersect the second order ideal to a unique element. In practice, it may happen
that several such elements belong to the same substitution class (which is not a problem
as one could always pick a single one at random), just as there could be none in some
classes.

It is worth pointing out that the picture gets more regular on the higher granularity
level, i.e., within a γ-equivalence class. Indeed, whatever the used item order for its
generation, the ideal of representative/canonical MGs has at least one element in each
γ-equivalence class. This fact, used unproven in the referred publications, admits an
immediate proof based on the same induction employed in the completeness proof for
our expansion procedure (Subsection 5.2). Moreover, one can easily show that given a
γ-equivalence class, the representative, i.e., minimal set w.r.t. any linear extension of the
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⊆-induced order, what is the case here 5, is necessarily a MG. As canonical elements
from the border are also required to be MGs, one might (too) easily conclude that the
entire border is in the MG family. Unsurprisingly, this does not hold in the general case:
there will be non-MG elements whose every subset is representative. The existence of
these elements seems to have been missed by Dong et al., although they play the same
role in the substitution mechanism as the canonical MGs. In fact, this is the main reason
for their expansion mechanism to be incomplete, i.e., to fail in the recovery of some of
the redundant MGs from the SSMG.

One may now question the interplay between the substitution and the total order, i.e.,
in what sense the representative/canonical sets are irreducible for substitution? After
all, the substitution is a reversible operator, so that any MG within a σ-equivalence
class could have been chosen as its distinguished element to be kept (as Hamrouni
et al. actually do). Although [14] says little on that point, our analysis shows that the
representative/canonical order ideal structure is crucial. Indeed, it works like a magnetic
nucleus for substitution in the sense that when properly performed, i.e., in the right
direction, it transforms an arbitrary itemset into a member of the representative ideal
or of its (complete) border. Here the right direction is the substitution of a subset Z1

in the argument X by the representative Z2 in the γ-equivalence class of Z1. We prove
below that this inevitably “attracts” the result within the aforementioned set where such
substitutions can no more be performed.

Our proposal is about completing the succinct representation with all those non-MGs
from the border of the ideal order of representative MGs, as in many cases they are the
only point from which some of the redundant MGs can be reached by substitution. The
details of our approach come in the following paragraphs.

5.2 The DSFS Family

Here is an illustration of the above arguments: Assume the ascending support order
on items in Table 3 (left) and consider the MGs of eacbdf. As pointed out above, it
is impossible to derive ecf from the resulting SSMG. Indeed, its subset cf is a non-
representative MG (ac is the representative in its γ-equivalence class). Hence, it remains
outside the system, whereas neither ea nor acd have a derivation chain that ends at ecf.
If we look the case other way round, the only sensible substitution from cf backwards
is cf /ac. This produces eac, a curious set whose every subset is a representative (hence
it belongs to the border of the corresponding ideal) without the set itself being even a
MG. Clearly, adding eac to the SSMG would restore its completeness. This requires a
larger definition of the canonicity which we provide below.

Definition 11. Let MGrepK be the set of the representative MGs that can be ex-
tracted from a context K. The negative border ofMGrepK is: Border(MGrepK) =
{X ⊆ I | ∀ Y ⊂X , Y ∈MGrepK ∧X /∈MGrepK}.
Since canonical itemsets form the negative border of the representative ideal, the old
canonical MGs of Dong et al. are obviously included in it (MGcanK ⊆ Border

5 We leave aside the question of whether or not the choice of the representative MG in [14]
amounts to fix a single linear extension of the set inclusion order and adopt, for the time being,
the interpretation of Hamrouni et al.
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(MGrepK)), together with the canonical non-MG elements. Moreover, the frequency
constraint further splits it into four subsets.

In order to formalize the irreducibility status of the above sets, we rely on a con-
strained substitution operator. Actually, we distinguish two complementary “directions”
for the substitution depending on the status of the involved sets. Thus, a positive (resp.
negative) substitution for an itemset X amounts to replace a subset Z1 of X by a set
Z2 of the same closure as Z1 which is larger (resp. smaller) w.r.t. the itemset order. We
focus on the relations between the set X and the set Y induced by one of the aforemen-
tioned substitutions.

Definition 12. Let X, Y ⊆ I, Z1 ⊂ X and Z2 ⊆ I s.t. Z1 �= Z2, Z ′′
1 = Z ′′

2 ,
and Subst(X , Z1, Z2) = Y . The positive/negative substitution relations are defined as
follows:

– X �+
d Y iff Z1 � Z2,

– X �−d Y iff Z2 � Z1.

It is noteworthy that each substitution is either positive or negative, i.e., there is no
neutral substitution. Moreover, positive substitutions produce results that are larger w.r.t.
� than the initial sets and hence have bigger ranks in the order (X �+

d Y implies
X � Y ), while the negative ones have the opposite effect. In particular, if the replaced
set is a representative, then the substitution is necessarily positive, while, conversely, if
a representative replaces another set, then it is negative.

Consider now the irreducible elements for the negative substitution, i.e., elements
for which such substitution could not be applied. We call them directed substitution-
free sets (denoted DSFSs).

Definition 13. Let DSFSK be the collection of the directed substitution-free sets
(DSFSs) that can be extracted from a context K. DSFSK = {I ⊆ I | ∀ I1 ⊂ I , ∀
I2 ⊆ I, (I ′′1 = I ′′2 =⇒ I1 � I2)}.

Example 9. Consider the context in Table 3 with the ascending support order on items.
The itemset eac is a DSFS, as mentioned above, whereas the family comprises ea and
acd, but not ecf.

Clearly, the set of DSFSs equals the union of representative MGs and their negative
border (DSFSK =MGrepK ∪ Border(MGrepK)). The next proposition is therefore
immediate.

Proposition 1. The set DSFSK is an order ideal of (2I , ⊆).

Given its structure, the DSFS family can be easily constructed by a level-wise algo-
rithm that, additionally, enumerates itemsets in the order �. Thus, all the DSFSs at a
particular level are easily recognizable since, all their subsets (in particular the maxi-
mal ones) belong to the already discovered part of the family. An additional effort is
necessary to identify the representative itemsets among all the family members. To that
end, the order properties are exploited: In fact, a representative is the first itemset to be
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examined within its γ-equivalence class. Hence, to establish that a DSFS is a repre-
sentative, it is enough to check that its closure has not been produced by a previously
extracted DSFS.

So far, we have established that any total order on itemsets generates a core ideal
in the Boolean lattice that works as an irreducible nucleus for swapping subsets with
equivalent ones. On the reverse side of the question, there is the expansion process: It
starts with the DSFSs and retrieves the entire MG family. Unsurprisingly, the positive
substitution is used to that end. Moreover, as for each negative substitution there is a
reverse positive one, and vice versa, every itemset from the Boolean lattice is necessar-
ily reachable by at least one chain of positive substitutions starting from a DSFS. In
particular, redundant MGs are reachable in this way.

Following to the above arguments, we claim that every redundant MG can be derived
from a DSFS of the same closure, using positive substitutions. More specifically, start-
ing from the DSFS X , and operating successive substitutions of a representative subset
Z1 by a non-representative set Z2 from the same γ-equivalence class will necessarily
result in the generation of the entire MG family. Hence we can assert that the above
retrieval mechanism, in its most general form is a complete means for calculating the
MGs.

Proposition 2. The expansion process is complete.

Proof. (Sketch) Formally, it can be shown by induction on the rank of a MG, w.r.t.
the total order relation on itemsets �, that each redundant MG contracts by successive
negative directed substitutions to a DSFS. The key fact of the proof says that the result
of a negative directed substitution has a smaller rank w.r.t. � than the original set.

Another concern with retrieval is the correctness of the mechanism, i.e., the warranty
that only MGs will be retrieved. To that end, we employ a straightforward support test:
An itemset is a MG whenever its support is strictly lower than the support of all its strict
subsets. For efficiency reasons, the test is limited to maximal subsets only. Obviously,
such a test requires a level-wise traversal of the Boolean lattice, which is a classical
approach of frequent itemset mining. Consequently, we may assert that the expansion
is correct as well.

Proposition 3. The expansion process is correct.

Proof. By construction, all derived elements from a DSFS are explicitly checked for
being MGs.

Theorem 1 states the adequacy of our global approach.

Theorem 1. The set DSFSK of the directed substitution-free sets (DSFSs) is a loss-
less representation of the minimal generator set.

To sum up, the DSFS family is the complete structure necessary to ensure that every
MG can be reached by a substitution-based expansion process that is well directed and
hence cycle-free. The DSFSs can be efficiently mined due to the order ideal form of
the family as it does not even require the discovery of all MGs. Despite the significant
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progress with respect to the previous two studies, there are issues with our framework
that are yet to be clarified.

First, while both SSMGs only rely on MGs, our construct involves further sets from
(yet laying not too far in) the Boolean lattice. The impact of these elements on the size
of the representation needs to be examined. Some clues on how many non-MG DSFSs
could appear are provided in Section 7.

Another issue, somewhat related to the previous one, concerns the expansion mech-
anism. An important feature thereof would be to limit all substitutions to MG subsets.
In other terms, it would be much simpler and more efficient to always replace a rep-
resentative MG Z1 by a non-representative one Z2 (and not an arbitrary set from the
same γ-equivalence class). Although we do not have a formal proof that such restriction
preserves the completeness of the expansion, we conjecture that it is the case.

Finally, minimality of the DSFS family is an issue as well. Whereas it is definitely
minimal for the entire Boolean lattice, it could be in some cases that a strict subset of
the DSFSs suffices to generate all the MGs. For instance, if there are more than one
DSFS in the same σ-equivalence class, then clearly only the smallest of them w.r.t. the
total order is indispensable. Moreover, some non-MG DSFSs may be of no use for
expansion towards all MGs, so it could be useful to remove them from the effective
representation. Provided a method for eliminating unnecessary DSFSs is designed, the
trade-off between reduction rate and cost should also be looked at.

6 The DSFS MINER Algorithm

In this section, we sketch the key ideas related to an algorithm allowing the extraction of
the DSFSs. This algorithm, called DSFS MINER, uses a breadth-first (or level-wise)
browsing of the search space. It hence treats minimal generator (MG) candidates by
ascending size. For a given size, the associated candidates are sorted w.r.t. the total order
relation �. This is naturally obtained as soon as items are ordered w.r.t. �. Indeed, the
procedure we use to generate candidates of size (i+1), using those of size i, respects
the total order relation since it combines each time two itemsets X and Y , s.t. X ≺ Y ,
sharing their first (i-1) items. The latter items will be augmented by the remaining item
in X and, then, by the remaining one in Y . Hence, the total order relation will always
be respected.

The pseudo-code of the DSFS MINER algorithm is given by Algorithm 1.
FDSFSK denotes the frequent directed substitution-free sets that can be extracted
from the extraction context K. While the set of frequent closed itemsets that can be
extracted from K is denoted FCIK. Also in the pseudo-code, the set of candidates, to
be tested in the ith iteration whether they are frequent representative MGs or not, will
be denoted FMGrepi. Each candidate c is characterized by the following fields: (1)
Supp: its support, (2) Clos: its closure, (3) Immediate-subsets: its list of immediate sub-
sets. Since by definition, the representative MG is the smallest one in its γ-equivalence
class, w.r.t. �, c is a representative if it is the first one to produce the associated closure
of its γ-equivalence class (cf. Algorithm 1, lines 14-15).
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Algorithm 1. DSFS MINER

Data: - An extraction context K where items are sorted w.r.t. the total order relation � and the
threshold of support minsupp.

Results: - The set FDSFSK.
Begin1

FDSFSK = {∅};2

FCIK = {∅′′};3

FMGrep1 = I \ {∅′′};4

For (i=1 ; FMGrepi �= ∅ ; i++) do5

closures in FMGrepi = ∅;6

supports in FMGrepi = 0;7

FMGrepi = GEN-CLOSURE(FMGrepi); /*The procedure GEN-CLOSURE8

produces closures as done in [4]*/
Forall (c ∈ FMGrepi) do9

If (c.Supp < minsupp) then10

FMGrepi = FMGrepi \ {c};11

Else12

FDSFSK = FDSFSK ∪ {c};13

If (c.Clos /∈ FCIK) then14

FCIK = FCIK ∪ {c.Clos};15

Else16

FMGrepi = FMGrepi \ {c};17

FMGrepi+1 = GEN-REPRESENTATIVE(FMGrepi);18

Return FDSFSK;19

End20

To generate candidates of size (i+1) starting from frequent representative MGs of
size i, DSFS MINER uses the GEN-REPRESENTATIVE procedure whose pseudo-code
is given by Algorithm 2. The latter is illustrated by Example 10.

Example 10. Consider the extraction context given by Table 3 (left). Let minsupp be
equal to 1 and the total order relation be the ascending support one. We will mainly
focus on how our new definition is able to take in consideration an itemset such as eac
thanks to the tests used in Algorithm 2. Indeed, when generating the set of representa-
tive MG candidates of size 3, we have the 2-frequent representative MGs ea and ec that
have their first item in common. Hence, by composing them we obtain the candidate eac
(cf. lines 2-6). After that, eac will be tested to check whether all its subsets are frequent
representative MGs. It is the case. Hence, the value of the variable Is-deleted re-
mains equal to 0. While that of Is-coveredwill change and become equal to 1 since
eac is included in the closure of its subset ea, equal to eacbdf (cf. lines 7-16). After
this test, we have the information that eac has all its subsets as frequent representative
MGs but is not a MG since it has the same closure than one of its subsets. Hence, it is a
frequent non-MG DSFS. Thus, eac belongs to the frequent part of the negative border.
It will then be retained as an element of the representation (cf. lines 17-19).
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Algorithm 2. GEN-REPRESENTATIVE

Data: - The set FMGrepi.
Results: - The set FMGrepi+1.

Begin1

/*The combinatorial phase of APRIORI-GEN [7] w.r.t. the total order relation �*/2

insert into FMGrepi+13

select p[1], p[2], ..., p[i-1], p[i], q[i]4

from FMGrepi p, FMGrepi q5

where p[1] = q[1], p[2] = q[2], ..., p[i-1] = q[i-1], p[i] ≺ q[i];6

Forall (c ∈ FMGrepi+1) do7

Is-deleted = 0; /*This variable checks whether c is deleted because one of its8

immediate subsets is not a frequent representative MG of its γ-equivalence class.*/
Is-covered = 0; /*This variable checks whether c is covered by the closure of one of9

its immediate subsets.*/
Forall (c1 ∈ c.Immediate-subsets) do10

If (c1 /∈ FMGrepi) then11

FMGrepi+1 = FMGrepi+1 \ {c};12

Is-deleted = 1;13

Else14

If (c ⊆ c1.Clos) then15

Is-covered = 1;16

If (Is-deleted = 0 and Is-covered = 1) then17

FDSFSK = FDSFSK ∪ {c};18

FMGrepi+1 = FMGrepi+1 \ {c};19

Return FMGrepi+1;20

End21

7 Experimental Results

In these experiments, we compare the cardinality of FDSFSK to that of the frequent
succinct MGs as defined by Dong et al. (denotedFMGsucK) and to that of the whole
set of frequent MGs (denoted FMGK). For the sake of clarity, we give the cardinality
ofFDSFSK as a sum of those of its components, i.e., the frequent representative MGs
(denoted FMGrepK) 6, the frequent canonical MGs (denoted FMGcanK) and the
frequent canonical non-MG elements. The latter set represents the difference between
FDSFSK and FMGsucK. It will hence be denoted DIFFK. Experiments were
conducted on several benchmark datasets 7 and for different total order relations. We
will give some representative results obtained from the PUMSB, MUSHROOM, CHESS

and T40I10D100K datasets. The first three datasets are commonly considered as dense

6 Since, a frequent representative MG is unique in its γ-equivalence class, the number of fre-
quent closed itemsets (CIs) is equal to that of frequent representative MGs and, hence, it will
not be given.

7 Downloadable from http://fimi.cs.helsinki.fi/data
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Table 4. The size of the different sets for benchmark datasets

PUMSB

minsupp (%) |FMGK| |FMGrepK| |FMGcanK| |DIFFK| |FDSFSK| |FMGK|
|FDSFSK|

90 2, 032 1, 467 3 0 1, 470 1.38

85 13, 795 8, 514 5 7 8, 526 1.62

80 67, 860 33, 308 5 8 33, 321 2.04

75 248, 406 101, 083 5 8 101, 096 2.48

70 658, 565 241, 259 6 11 241, 276 2.70

MUSHROOM

minsupp (%) |FMGK| |FMGrepK| |FMGcanK| |DIFFK| |FDSFSK| |FMGK|
|FDSFSK|

10 7, 631 4, 897 471 545 5, 913 1.29

5 21, 160 12, 854 1, 207 1, 251 15, 312 1.38

3 37, 973 22, 230 1, 943 1, 911 26, 084 1.46

2 57, 728 31, 767 2, 644 2, 479 36, 890 1.56

1 103, 517 51, 672 3, 818 3, 576 59, 066 1.75

CHESS

minsupp (%) |FMGK| |FMGrepK| |FMGcanK| |DIFFK| |FDSFSK| |FMGK|
|FDSFSK|

90 504 504 0 2 506 0.99

80 5, 114 5, 114 0 6 5, 120 0.99

70 23, 992 23, 992 0 16 24, 008 0.99

60 98, 804 98, 778 1 28 98, 807 0.99

50 372, 604 369, 451 2 63 369, 516 1.01

T40I10D100K
minsupp (%) |FMGK| |FMGrepK| |FMGcanK| |DIFFK| |FDSFSK| |FMGK|

|FDSFSK|
5 317 317 0 0 317 1

2.50 1, 222 1, 222 0 0 1, 222 1

2 2, 294 2, 294 0 0 2, 294 1

1.50 6, 540 6, 540 0 0 6, 540 1

1 65, 237 65, 237 0 0 65, 237 1

ones while the fourth dataset is considered as a sparse one. The ascending support order
is chosen as an example of a total order relation �. The results on these datasets are
summarized in Table 4.

For the PUMSB and MUSHROOM datasets, we notice an important lossless reduction
reaching a peak of 2.70 and 1.75 times, respectively. For the PUMSB dataset, the num-
ber of canonical elements is too small. Hence, we can assume that there is an average of
1 frequent DSFS per γ-equivalence class. For the MUSHROOM dataset, this number is
larger than that of the first dataset. Nevertheless, w.r.t. the number of frequent CIs, that
of canonical elements is still very low which makes it possible to get, in average, only
1.18 frequent DSFS per γ-equivalence class. Noteworthily, the numbers of canonical
elements which are, respectively, MGs and non-MGs, are nearly equal.

The case of the CHESS dataset is also very interesting. At a glance, for minsupp val-
ues higher than 60%, statistics are far from indicating that CHESS is a dense dataset.
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Indeed, each γ-equivalence class only contains a unique frequent MG, i.e., the repre-
sentative one. Nevertheless, the latter is in general different from its closure which leads
to the existence of some canonical elements in FDSFSK. These elements are neces-
sarily non-MGs (i.e., belong to DIFFK). Hence, for these values of minsupp, the size
of FDSFSK is slightly greater than that of FMGK. For minsupp = 50%, the size of
FDSFSK becomes lower than that of FMGK since, in this case, there are frequent
redundant MGs whose number (equal to (|FMGK| - |FMGrepK| - |FMGcanK|),
i.e., 3531) is by far greater than the cardinality of DIFFK (equal to 63).

For the sparse dataset T40I10D100K, each itemset is equal to its closure. Hence,
the set FDSFSK is simply equal to the set FMGrepK.

8 Conclusion

The rapidly increasing reliance on MGs in association rule mining motivated a push
towards deeper understanding of their structural properties, computational behavior,
connections to other constructs, etc. Reducing the combinatorial variations within the
family is a central issue for its results in smaller-size storage and eases further manipu-
lations. We introduced here a generation operator for MGs and a family of irreducible
elements, called DSFSs, for the operator which jointly constitute a concise yet loss-
less representation of the entire MG family. Our work follows an original idea from
the literature that was developed to a theoretically sound construct and provided with
both deeper structural results and computational means. First empirical evidences for
the benefits of the new family have been obtained as well.

At its current stage, our study focuses on the efficient generation of the DSFS family.
Thus, besides our own method, other algorithms from the literature working with MGs
could be adapted for this task, both breadth-first search ones, e.g., TITANIC [5], and
depth-first ones, e.g., the right-to-left search algorithm GR-GROWTH [8]. Of course, it
will be interesting to compare performances of these algorithms on different datasets.
The next step in this direction is the design of efficient expansion methods, i.e., ones
yielding to the entire MG family from the DSFSs.

We also plan to investigate the connection between the DSFSs and other set families
studied in FCA or data mining, e.g., pseudo-closed sets [21,22], non-derivable itemsets
[23], etc. The implications of our definition for constructs similar to MGs from fields
like Boolean functions and hyper-graphs, will also be examined.

Acknowledgements

We are grateful to the anonymous reviewers for their useful remarks and suggestions.
The first author would like to thank Le fonds québécois de la recherche sur la na-
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Abstract. Pseudo-intents (also called pseudo-closed sets) of formal contexts
have gained interest in recent years, since this notion is helpful for finding min-
imal representations of implicational theories. In particular, there are some open
problems regarding complexity. In our paper, we compile some results about
pseudo-intents which contribute to the understanding of this notion and help in
designing optimized algorithms. We provide a characterization of pseudo-intents
based on the notion of a formal context’s incrementors. The latter are essentially
non-closed sets which – when added to a closure system – do not enforce the
presence of other new attribute sets. In particular, the provided definition is non
recursive. Moreover we show that this notion coincides with the notion of a quasi-
closed set that is not closed, which enables to reuse existing results and to for-
mulate an algorithm that checks for pseudo-closedness. Later on, we provide an
approach for further optimizing those algorithms based on a result which corre-
lates the set of pseudo-intents of a formal context with the pseudo-intents of this
context’s reduced version.

1 Introduction

Pseudo-intents are of significant interest in formal concept analysis. One central re-
sult ([5]) states, that the implication set {P → P II | P pseudo-intent of K} (called
stem base) constitutes a so-called implicational base, i.e., a minimal set of implications
generating the implicational theory of the formal context K. In this regard it is also
important to note that for an arbitrary implication, checking whether it is semantically
entailed by a set of implications can be decided in linear time ([2, 8]). Thus, pseudo-
intents become relevant for problems related to small (yet quick to query) representation
of implicative knowledge.

The complexity of determining for a given context K = (G, M, I) and attribute set
A ⊆ M , whether A is a pseudo-intent (or: pseudo-closed) with respect to K is still
an open problem (see [9]). The prevailing assumption seems to be that the problem’s
complexity is rather high (at least beyond polynomial time). Partial results ([7, 6]) show
that it is in coNP.

In our paper, we compile some results about pseudo-intents and provide optimized
algorithms for checking for pseudo-closedness.

In detail, we will proceed as follows: In Section 2, we recall the fundamental def-
initions and propositions of FCA needed to specify and deal with the topic. Section 3
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provides and verifies an algorithm which allows to convert an arbitrary set of implica-
tions into a stem base. Section 4 introduces the notion of incrementor and shows how
it can be used to provide a non-recursive characterization of pseudo-intents. In the end,
this notion shows to have a direct correspondence to that of a quasi intent introduced
in [3]. Resulting from these preceding considerations, Section 5 presents an algorithm
which checks for pseudo-closedness. Section 6 shows how pseudo-closedness can be
checked even by examining the reduced version of the considered context and provides
a corresponding algorithm. Finally, Section 7 concludes and outlines possible directions
for further research.

2 Preliminaries

In this section, we will introduce the notions from formal concept analysis necessary
for our work.

First of all, note that we use the notation “⊂” to indicate the strict subset, i.e. A ⊂ B
means A ⊆ B and A �= B.

Deviating from the usual line of presentation, we will introduce implications and
pseudo-closed sets just on the basis of closure operators. This allows to talk about those
notions independently from concrete formal concepts and facilitates the presentation
of some results in the sequel. However, note that this is not a proper generalization,
since every closure operator can be represented by the (.)II -operator of an appropriately
chosen formal context (e.g. the context ({A | ϕ(A) = A}, M,�)). Thus, the cited
definitions and results – although defined on basis of a formal context – carry over to
our way of introducing those notions.

The following considerations are based on an arbitrary set M . We will first define
the fundamental notion of a closure operator M . Roughly spoken, applying such an
operator to a set can be understood as a minimal extension of that set in order to fulfill
certain properties.

Definition 1. Let M be an arbitrary set. A function ϕ : P(M)→ P(M) (whereP(M)
denotes the powerset of M ) will be called

– EXTENSIVE, if A ⊆ ϕ(A) for all A ⊆M ,
– MONOTONE, if from A ⊆ B follows ϕ(A) ⊆ ϕ(B) for all A, B ⊆M , and
– IDEMPOTENT, if ϕ(ϕ(A)) = ϕ(A) for all A ⊆M .

If ϕ is extensive, monotone, and idempotent, we will call it a CLOSURE OPERATOR. In
this case, we will additionally call

– ϕ(A) the CLOSURE of A,
– A CLOSED (or ϕ-CLOSED), if A = ϕ(A).

The family of all closed sets is also called CLOSURE SYSTEM. Furthermore, any closure
system constitutes a lattice with set inclusion as the respective order relation.

In the sequel, we show, in which way closure operators are closely related to
implications.
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Definition 2. Let M be an arbitrary set. An IMPLICATION on M is a pair (A, B) with
A, B ⊆M . To support intuition, we write A→ B instead of (A, B).1

A set C ⊆M RESPECTS an implication A→ B if

A ⊆ C implies B ⊆ C.

Furthermore, for C ⊆M and a set I of implications on M , let CI denote the smallest
set with

– C ⊆ CI and
– CI respects i for every implication i ∈ I.2

It is well known, that the operation (.)I is a closure operator on M . So, according to
Definition 1, if C = CI, we call C (I-)CLOSED.

Definition 3. We say I ENTAILS A→ B (written: I |= A→ B), if every C ⊆M that
respects all implications of I also respects A→ B.

An implication set I will be called NON-REDUNDANT, if for any i ∈ I, we have that
I \ {i} does not entail i.

An implication set I will be called an IMPLICATION BASE for a closure operator ϕ if

– it is NON-REDUNDANT, i.e. for any i ∈ I, we have that I \ {i} does not entail i,
– it is SOUND, i.e., any implication on M entailed by I is respected by all ϕ-closed

sets, and
– it is COMPLETE, i.e., any implication on M respected by all ϕ-closed sets is entailed

by I.

Well-known facts concerning the entailment of implications are

– I |= A→ B exactly if B ⊆ AI and
– I is non-redundant iff B �⊆ AI\{A→B} for all A→ B ∈ I.

Below, we will now define the central notion of this paper. Opposed to the usual way
of presentation, we will define the notion of pseudo-closedness independently from a
particular formal context, just referring to a given closure operator. Besides the more
general definition this will facilitate our considerations in section 3.3

Definition 4. For a given closure operator ϕ, a set P ⊆ M will be called PSEUDO-
CLOSED if ϕ(P ) �= P and ϕ(Q) ⊆ P holds for every pseudo-closed Q ⊂ P .

Note that this definition is recursive. Since the set M is always assumed to be finite in the
sequel, it is nevertheless correct. However, directly using this definition to check whether
an attribute set is a pseudo-intent requires a recursion as well and is therefore computa-
tionally costly. This led to the complexity questions mentioned in the introduction.

Regarding pseudo-closed sets, we give corollaries of the Propositions 24 and 25
from [4].

1 To facilitate reading we will occasionally omit the parentheses, i.e., we will write a, b → c
instead of {a, b} → {c}.

2 Note, that this is well-defined, since the mentioned properties are closed wrt. intersection.
3 Trivially, this coincides with the notion of pseudo-intent of a formal context if we set ϕ=(.)II .
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Proposition 1. If P and Q are closed or pseudo-closed sets with P �⊆ Q and Q �⊆ P ,
then P ∩Q is a closed set.

The first Proposition directly yields the fact that the set of all closed and pseudo-closed
sets (of a closure operator ϕ) constitute a closure system themselves (for another closure
operator ψ).

Proposition 2. Every (wrt. a closure operator ϕ) sound and complete set of implica-
tions contains an implication A → B with A ⊆ P and ϕ(A) = ϕ(P ) for every
pseudo-closed set P .

Moreover, for every closure operator, the family of its pseudo-closed sets can be used
to define a canonical implication base called stem base ([5]):

Theorem 1. Let ϕ be a closure operator. Then the set

SB := {P → ϕ(P ) | P pseudo-closed for ϕ}
is an implication base of ϕ.

In the remainder of this section, we will very briefly recall well-known basic facts from
FCA for later reference.

Proposition 3. Properties of the derivation operator (.)I .

– (.)II is a closure operator on G as well as on M , i.e., it is extensive (extII), mono-
tone (monII) and idempotent (idpII ).

– for all A �= ∅, AI =
⋂

a∈A aI . decomp

We use I(K) to denote the family of all concept intents of K.
The concept intents of a formal concept are exactly those attribute sets closed wrt.

(.)II , i.e., I(K) = {A | A = AII ⊆ M}. In other words, the set I(K) coincides
with the closure system generated by (.)II on M . Consequently, the family I(K) of all
concept intents of a formal context is closed wrt. intersection (clos∩).

We proceed by giving a Proposition which is the dual of Proposition 30 from [4].

Proposition 4. If G ⊆ H then every intent of (G, M, I ∩ (G ×M)) is an intent of
(H, M, I).

In words, the preceding proposition just states that adding an object with arbitrary intent
to a context preserves all previous intents.

3 Generating Stem Bases from Implication Sets

In this section, we present an algorithm which is a slight modification of the one pre-
sented in [1] and provide a self-contained proof for its correctness.

Given an arbitrary finite set I = {i1, . . . , in} of implications on an attribute set M ,
the algorithm from Fig. 1 will convert this set into a stem base SB with SB |= A→ B
exactly if I |= A→ B.
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function: stembase(I)

1. Set SB := ∅.
2. For every A→ B ∈ I

substitute A→ B by A→ (A ∪B)I.

3. As long as I �= ∅,
(a) select an A→ B from I,

(b) delete A→ B from I,

(c) calculate AI∪SB,

(d) if AI∪SB �= B then
add AI∪SB → B to SB.

4. Output SB and terminate.

Fig. 1. Algorithm stembase(I) for calculating the stem base of the implicational theory
generated by I

Theorem 2. The algorithm stembase computes a stembase for the closure operator
(.)I.

Proof: We have to show two properties: For any set I of implications on M , we have

– (.)I = (.)stembase(I) and
– stembase(I) is a stembase.

The first property will be proved by iteratively showing that every single action carried
out by the algorithm does not change the closure operator (.)I∪SB. By “concatenating”
those arguments and with the observation that SB = ∅ in the beginning and I = ∅ in
the end, we can conclude that this first property indeed holds.

So, first, we consider the actions carried out in line 2. Let H = I\{A→ B}∪{A→
(A ∪ B)I} for an arbitrary A → B ∈ I. Now consider an arbitrary C ⊆ M . We have
to show, that C respects all implications from I exactly if it respects all implications
from H.
“⇐”: This is trivial, since B ⊆ (A ∪B)I.
“⇒”: Assume C respects all implications of I. Now, the only way for C to not respect
all implications of H would obviously be A ⊆ C and BI �⊆ C. On the other hand,
since C respects A → B, we know that B ⊆ C. Furthermore, BI is by definition
the smallest set (wrt. set inclusion) containing B and respecting all implications of I.
Hence, we have BI ⊆ C, leading to a contradiction.

Now, we consider the actions of point 3. Let I and SB be the sets before carrying out
an a-b-c-d block and I∗ and SB∗ the respective values afterwards. Again, considering
an arbitrary C ⊆ M , we have to show, that C respects all implications from I ∪ SB
exactly if it respects all implications from I∗ ∪SB∗.
“⇒”: This is obvious, since clearly for every implication A → B from I∗ ∪SB∗ we
have an implication D → B from I ∪SB with D ⊆ A.
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“⇐”: Suppose C respects all implications from I∗ ∪SB∗. Assuming that is does not
respect all implications of I ∪ SB would imply A ⊆ C and B �⊆ C. Yet, knowing
that C respects AI∪SB → B (being also trivially true for AI∪SB = B), we have
to conclude that AI∪SB �⊆ C. But, again by definition, AI∪SB is the smallest set
containing A and respecting all implications from I∪SB, enforcing AI∪SB ⊆ C and
therefore yielding a contradiction.

Let SB = stembase(I). We prove the second property by showing that for all A→
B ∈ SB, the set A is pseudo-closed wrt. (.)SB. Note that from the construction of the
algorithm and the previous proof (including the fact that (.)I∪SB remains constant)
follows that, for all A→ B ∈ SB,

A = ASB\{A→B}. (∗)
Now we assume A were not pseudo-closed for an A → B ∈ SB. Obviously, it is not
closed either. So there must exist a pseudo-closed set P ⊂ A with PSB �⊆ A. Now,
consider Q := PSB\{A→B}. By monotonicity, we then have Q ⊆ A. So the only
possibility to make PSB �⊆ A true is that Q does not respect A → B. Yet, this would
imply Q = A and consequently PSB = B. Now due to Proposition 2, we know, that
SB has to contain an implication C → D with C ⊆ P and CSB = PSB = B.
Moreover, due to the construction we know that D = CSB = B. Since (A → B) �=
(C → B), we have that C → B ∈ SB \ {A→ B}. Yet, from this and C ⊆ A follows
B ⊆ ASB\{A→B}, contradicting the equation (*). ��
Calculating the I-closure (without preprocessing) can be done in time O(|I|) due to
[8]. Hence, the presented algorithm runs in O(|I|2) i.e. quadratic time (this complexity
bound for the task accomplished by the algorithm had already been shown in [10]).
Mark that this algorithm naturally also determines all pseudo-intents (being just the
premises of the implications of SB).

4 Characterizing Pseudo-intents

Now, we will introduce notions that are essential for our aim to characterize pseudo-
intents non-recursively.

Definition 5. Let K = (G, M, I) be a formal context and let P ⊆ M . We define
K[P ] := (H, M, IP ) (say: K AUGMENTED BY P ) as follows:

– H := G ∪ {gP } (where we presume gP �∈ G) and
– IP := I ∪ ({gP } × P )

The following results are immediate consequences of this definition:

Lemma 1. Let K = (G, M, I) be a formal context and let P ⊆M . Then

– for all g ∈ G, we have gIP = gI , cons1
– for all A ⊆ G, we have AIP = AI , cons2
– for all A ⊆M , we have AI = AIP \ {gP}, cons3
– for all A ⊆M with gP �∈ AIP , we have AIP IP = AII , and cons4
– for all A ⊆M with gP ∈ AIP , we have AIP IP = P ∩AII . cons5
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Proof

– cons1 This is trivial, since {m | gIAm} = {m | gIm}.
– cons2 Due to decomp, we have AIA =

⋂
g∈A gIA . Due to cons1, this equals

⋂
g∈A gI = AI .

– cons3 Consider an arbitrary g ∈ G = H \ {gP}. The statement g ∈ AIP is
equivalent to gIP m for all m ∈ A. Since - due to the definition - IP and I coincide
on all objects but gP , this is equivalent to gIm for all m ∈ A, which in turn is the
same as g ∈ AI .

– cons4 From cons3, we conclude AIP IP = (AIP \ {gP})IP = AIIP and by cons2
follows AIIP = AII .

– cons5 From AIP ={gP}∪(AIP \{gP}), we can conclude AIP IP =
⋂

g∈AIP gIP =
gIP

P ∩
⋂

g∈AIP \{gP } gIP = P ∩(AIP \{gP})IP . Due to cons3, this equals P ∩AIIP

and due to cons2 this is just P ∩AII .

Proposition 5. Properties of augmentations.

A ∈ I(K[A]), i.e., A is an intent of K[A], cont[]
I(K) ⊆ I(K[A]), i.e., every formal concept intent of K is also a concept intent of
K[A], mon[]
If A ∈ I(K) then I(K[A]) = I(K), i.e., if an object is added to the context,
the intent of which is already an intent of K, the overall set of intents remains
unchanged. intid[]

Proof

cont[]: Obviously, (gA
IAIA , A) is a formal concept of K[A].

mon[]: This property follows directly from Proposition 4.
intid[]: Assume the contrary, i.e., there were a B ∈ I(K[A]) \ I(K). Due to
decomp, we know B = BIAIA . Obviously, gA has to be in BIA , since other-
wise BIAIA = BII by cons4, contradicting B �∈ I(K). Thus, due to cons5,
B = BIAIA = A ∩ BII . Yet, knowing that A is an intent of K and due to clos∩,
the intersection of the two closed sets A and BII has again to be closed, we have
found a contradiction to the assumption.

To facilitate the intuition about context augmentations, consider Fig. 2, which shows
some augmentations of a small context and the impact of this on the set of concept intents.

For our further line of argumentation, the motivating intuitive idea is (also conveyed
by the name) that a pseudo-intent is “almost an intent”. Since we know that augmenting
a context by an intent does not change the corresponding intent set, we could expect
that adding a pseudo-intent would result in just a very slight change. Considering the
slightest change possible we define the notion of an incrementor.

Definition 6. We say that P is an INCREMENTOR of K, if

– P is not a concept intent of K and
– for every concept intent A ⊆ M of K[P ] we have B = P or B is a concept intent

of K.
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K I(K)

K m1 m2 m3

g1 × ×
g2 × ×

{m2},
{m1,m2},
{m2,m3},
{m1,m2,m3},

K[{m1, m3}] I(K[{m1,m3}])
m1 m2 m3

g1 × ×
g2 × ×
g{m1,m3} × ×

∅,{m1},{m2}, {m3},
{m1,m2},{m1, m3},{m2,m3},
{m1,m2,m3}

K[{m2}] I(K[{m2}])
m1 m2 m3

g1 × ×
g2 × ×
g{m2} ×

{m2},
{m1,m2},
{m2,m3},
{m1,m2,m3}

K[∅] I(K[∅])
m1 m2 m3

g1 × ×
g2 × ×
g∅

∅, {m2},
{m1,m2},
{m2,m3},
{m1,m2,m3}

Fig. 2. Examples for context augmentations and their consequences for the set of concept intents.
Intents added by the augmentation are underlined.

Looking back at Fig. 2, we see, that in this case, the empty set would be an incrementor
of K. Moreover, it takes little consideration to verify that it is also a pseudointent of K.
The following theorem partly justifies our intuition by ensuring that every pseudointent
is indeed an incrementor.

Theorem 3. Let K be a formal context and P be a pseudo-intent of K. Then P is an
incrementor of K.

Proof: Consider the context K[P ]. Let (A, B) be a formal concept of K[P ]. We know,
that B = AIP =

⋂{aIP | a ∈ A} (due to decomp).
Obviously, if gP �∈ A, we have that (A, B) is a concept of K as well, since aIP = aI

for all a �= gP .
If gP ∈ A, we have that B = gIP

P ∩
⋂{aIP | a ∈ A \ {gP }} which yields B =

P ∩⋂{aI | a ∈ A \ {gP}}.
Supposing pseudoclosedness of P , from Proposition 1 follows that B is an intent of

K, provided there exists some a ∈ A \ {gP} with P �⊆ aI . In the other case, we would
have B = P . Thus (P IP , P ) is the only additional formal concept of K[P ] compared
to K. This shows that P is an incrementor. ��
Now it remains to investigate, whether this necessary condition for being a pseudo-
intent is also sufficient. Unfortunately, this is not the case as Fig. 3 illustrates: in this
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K I(K)
m1 m2 m3 m4

g × × ×
{m2, m3, m4},
{m1, m2, m3, m4},

K[{m2, m3}] I(K[{m2, m3}])
m1 m2 m3 m4

g × × ×
g{m2,m3} × ×

{m2, m3},
{m2, m3, m4},
{m1, m2, m3, m4},

K[{m2}] I(K[{m2}])
m1 m2 m3 m4

g × × ×
g{m2} ×

{m2},
{m2, m3, m4},
{m1, m2, m3, m4},

Fig. 3. Counterexample for the coincidence of pseudo-intents and incrementors

example, {m2, m3} is an incrementor of K but not a pseudo-intent since it contains the
pseudo-intent ∅ but not its closure {m2, m3, m4}.

Yet, examining this counter-example a bit further, we see that the set being an in-
rementor but not a pseudo-intent contains a set being again an incrementor (namely
{m2}) – with no intent “in between”. This justifies to strengthen the condition accord-
ingly. Yet, prior to proving that this leads to the desired characterization, we show a
lemma that will facilitate the subsequent proof.

Lemma 2. Let K be a formal context and A be an incrementor of K. Then for any
pseudo-intent Q of K with Q ⊂ A and QII �⊆ A we even have A ⊆ QII .

Proof: Assume the contrary, i.e. A �⊆ QII . Then, considering B := A ∩ QII , we see
that B ⊂ A.

By cont[] and mon[], respectively, we know A, QII ∈ I(K[A]) and hence by clos∩
also B ∈ I(K[A]).

On the other hand, B can not be an intent of K, since Q ⊂ B (following from
Q ⊂ A and Q ⊂ QII – the latter by extII) but QII �⊆ B (this is because Q ⊂ B
implies QII ⊆ BII by monII and B being an intent of K would mean B = BII )

So B must be an intent of K[A] that is neither A itself nor an intent of K. Yet, this
contradicts the assumption of A being an incrementor. ��
Now we will provide and prove the announced non-recursive characterization for
pseudo-intents.

Theorem 4. Let K = (G, M, I) be a formal context and let P ⊆ M . P is a pseudo-
intent of K if and only if

P is an incrementor of K and inc
for every incrementor Q ⊂ P , there is an intent R with Q ⊂ R ⊂ P . min
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Proof: “⇒”
That every pseudo-intent is an incrementor has already been shown by Theorem 3.

We will prove the second condition min indirectly. Thus, we assume we have a
pseudo-intent P violating min, i.e., there is a Q ⊂ P being an incrementor and for all
R with Q ⊂ R ⊂ P , the set R is not an intent. Note that, from Theorem 3, we know
that P is an incrementor as well. Q cannot be an intent (as this would contradict the
definition of incrementor), thus we consider the two remaining possibilities:

– Suppose Q is a pseudo-intent.
This would (due to the definition of pseudo-intent) naturally require QII to be
contained in P . Altogether this would mean: Q ⊂ QII ⊂ P contradicting our
assumption. Hence, R cannot be a pseudo-intent.

– Now, suppose Q is neither an intent nor a pseudo-intent.
Then – due to the definition of pseudo-intent – there has to exist a pseudo-intent
S ⊂ Q with SII �⊆ Q.
From Lemma 2 then additionally follows Q ⊆ SII .
Since the definition of pseudo-intent requires P to contain SII , we have the setting:
Q ⊂ SII ⊂ P . Yet, again, this obviously contradicts our assumption.
Thus, it is impossible that Q is neither closed nor pseudo-closed wrt. K.

Concluding, Q can be neither an intent nor a pseudo-intent nor none of both. Hence,
the assumption of its existence must be false.
“⇐”
Assume the contrary, i.e., both conditions inc and min be fulfilled and yet P not be
a pseudo-intent. Obviously P is not an intent either (otherwise, it would not be an
incrementor by definition).

Therefore, P must be neither closed nor pseudo-closed. Then, by the definition of
pseudo-closedness, there must be a pseudo-closed set Q ⊂ P with QII �⊆ P .

From Lemma 2 follows that P ⊂ QII . Then, we have the setting Q ⊂ P ⊂ QII .
Furthermore, note that Q ⊆ P ⊆ QII entails QII ⊆ P II ⊆ (QII)II via monII

which together with idpII yields QII = P II . But then, the very same argument yields
SII = QII for every S with Q ⊂ S ⊂ P (and therefore S �= SII ). Clearly, this
contradicts the initial assumption min. ��

After having established those results, it takes little consideration to see (referring to [3]
and [7]) that the incrementors of a formal context are just those quasi-intents which are
not intents. This allows to reuse the corresponding results. In particular, the following
corollary to the Proposition 2 from [7] can be used to check whether a given set is an
incrementor in polynomial time.

Theorem 5. P is an incrementor of K if and only if

– P is not an intent of K and

– for all g ∈ G, we have P ⊆ gI or gI ∩ P is an intent of K.
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function: incrementor(A, K)

-- Calculate AII. If AII = A,
output "NO" and terminate.

-- For all g ∈ G,

– Calculate Ã := gI ∩A.
If Ã = A then continue with next g.

– Calculate ÃII.

– If Ã �= ÃII then
output "NO" and terminate.

-- Output "YES" and terminate.

Fig. 4. Algorithm incrementor(A,K) for checking whether A is an incrementor of K

function: scan(A,K,check(.))

-- For all a ∈ A,
add A \ {a} to (previously empty) list L

-- Starting from the L’s first element
for every B from L

– If BII �= AII,
continue with next list element.

– If check(B),
output "YES" and terminate.

– Otherwise, for every b ∈ B, append B \ {b} to L
if not already contained.

-- if L processed,
output "NO" and terminate.

Fig. 5. Algorithm scan for determining whether for a given A ⊆ M there is a B ⊂ A with
BII = AII and check(B)

5 An Algorithm for Checking Pseudo-closedness

Applying the results cited and presented in the preceding sections, we will now provide
an algorithm for checking pseudo-closedness and analyze its complexity.4 We start by
giving an algorithm computing whether for a given formal context K = (G, M, I), a
given attribute set A ⊆M is an incrementor of K. This algorithm is shown in Fig. 4.

4 We expect the reader to be familiar with the basic notions from complexity theory.
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function: pseudoIntent(A,K)

-- Check whether incrementor(A,K).
If not so, output "NO" and terminate.

-- If scan(A,K,incrementor(.,K)),
output "NO" and terminate,
otherwise, output "YES" and terminate.

Fig. 6. Algorithm pseudoIntent(A,K) for checking whether A is a pseudo-intent of K

It is well-known, that the time complexity for computing the closure AII of a given
attribute set A is in O(|G| · |M |) while comparing two sets or computing gI for a given
object is less costly. Thus, regarding the time costs, the incrementor function con-
sists essentially of the |G|+1-fold calculation of the closure, hence its time complexity
is in O(|G|2 · |M |).

Next, we provide an algorithm which for a given attribute set A, “scans” whether
there exists a set B ⊂ A with BII = AII fulfilling an arbitrary computable criterion
(denoted by the function check). This algorithm is shown in Fig. 5.

In general the time complexity of this algorithm is bounded by 2|M| times the
complexity of check.

Finally, we employ theincrementor and thescan functions to formulate the algo-
rithm which actually checks for pseudo-closedness. This algorithm is displayed in Fig. 6.

Resulting from the earlier complexity considerations, we find that its the time
complexity is in O(2|M|.

6 Optimization: Operating on the Reduced Context

We will now discuss in which way this algorithm can be optimized. One of the straight-
forward issues to think about would be whether the problem of identifying pseudo-
intents of a formal context K can be solved by checking for pseudo-closedness in the
reduced version of K. This should be possible, since – roughly spoken – a reduced
context contains the same implicative information as the original one.

Theorem 6. Let K = (G, M, I) be a formal context and K
∗ = (H, N, J) (with H ⊆ G

and N ⊆ M as well as J = I ∩ (H × N)) the corresponding reduced context. Let
furthermore m∗ = mII ∩N for any m ∈ M . The fact that K

∗ is a reduced version of
K then yields m∗II = mII .

A set P ⊆M is a pseudo-intent of K exactly if one of the following is true:

– there is a pseudo-intent P ∗ of K
∗ such that P = P ∗ ∪ {m ∈M \N | m∗ ⊂ P ∗},

– P = {m} ∪ ∅II for an m∗ �= ∅, or
– P = m∗∪{m ∈M \N | m∗ ⊂ m∗} for an m ∈M \N if there is no pseudo-intent

Q∗ of K
∗ with Q∗JJ = m∗.

Proof: First note that the set

J := SB∗ ∪ {{m} → m∗ | m ∈M \N} ∪ {m∗ → {m} | m ∈M \N}
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(where SB∗ is the stembase of K
∗) is sound and complete for the closure operator

(.)II . So we will just show, that applying the stembase-algorithm from Section 3 just
yields an implication set where the premises are exactly the sets presented above.

First we consider the result of point 2 of the algorithm:

– Every P ∗ → P ∗JJ ∈ SB∗ will be transformed to

P ∗ → P ∗JJ ∪ {m | m∗ ⊆ P ∗JJ}.
– Every {m} → m∗ will be transformed to

{m} → m∗ ∪ {m | m∗ ⊆ m∗}.
– Every m∗ → {m} will be transformed to

m∗ → m∗ ∪ {m | m∗ ⊆ m∗}.
Now consider point 3:

– Every P ∗ → P ∗II will be transformed to

P ∗ ∪ {m ∈M \N | m∗ ⊂ P ∗} → P ∗II .

function: pseudoIntentRed(A,K)

-- Check whether incrementor(A,K).
If not so, output ‘‘NO’’ and terminate.

-- Calculate reduced context K
∗ = (H, N, J)

-- Calculate ∅II and m∗ for all m ∈M \N.

-- If A \ ∅II = {a} ⊆M \N then
output ‘‘YES’’ and terminate.

-- Calculate P ∗ := A ∩N.

-- Check whether A = P ∗ ∪ {m ∈M \N | m∗ ⊂ P ∗}.
If so, check whether pseudoIntent(P ∗,K

∗).
If so, output ‘‘YES’’ and terminate.

-- Check whether A = m∗ ∪ {m ∈M \N | m∗ ⊂ m∗}
for an m ∈M \N.
If so, check whether
scan(A,K

∗,incrementor(.,K
∗)).

If not so, output ‘‘YES’’ and terminate.

-- Output "NO" and terminate.

Fig. 7. Algorithm pseudoIntentRed for checking whether a set A is a pseudo-intent of a
formal context K
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– Every {m} → m∗II will be
− deleted if m∗ = ∅ or
− otherwise, transformed to {m} ∪ ∅II → m∗II .

– Every m∗ → {m}II will be
− deleted, if there is a pseudo-intent Q∗ of K

∗ with Q∗JJ = m∗ or
− otherwise, transformed to

m∗ ∪ {m ∈M \N | m∗ ⊂ m∗} → {m}II . ��

These observations allow an optimization of the pseudo-closedness checking algorithm
from Fig. 6 in Section 5.

Considering the complexity, we can state the following. Due to [4], a formal context
can be reduced in O((|G| + |M |) · |G| · |M |) time (and is hence rather cheap). There-
fore, this optimization could be potentially beneficiary in cases where the context is not
already reduced, since the upper bound for the time complexity is decreased to O(2|N |).

7 Conclusions and Further Work

In our paper, we presented several results regarding pseudo-intents. We showed how
an arbitrary implication set can be turned into a stem base (the premises of which are
per definitionem just the pseudo-intents). Furthermore, based on a characterization of
pseudo-intents via incrementors and using known results about quasi-intents, we pro-
vided an algorithm which allows to decide for a given formal context K and an attribute
set P whether P is a pseudo-intent of K Moreover, we showed how this algorithm can
be further optimized by calculating with the reduced version of the considered context.

Although the complexity questions mentioned in the beginning remain unsolved,
we hope that the structural insights presented in this paper might contribute to their
solution. Of course this would be a main goal of further research.

On the other hand, comprehensive experiments would be the next step to investigate
how the algorithms proposed here perform in practical cases (albeit not having sub-
stantial evidence for this, our conjecture is that the average complexity would be much
better than suggested by our worst-case analyses).

Finally, if this should be the case, the provided algorithms could be used for
developing new data-mining and exploration methods.
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Abstract. The Galois Sub-hierarchy (GSH) is a polynomial-size repre-
sentation of a concept lattice which has been applied to several fields,
such as software engineering and linguistics.

In this paper, we analyze the performances, in terms of computation
time, of three GSH-building algorithms with very different algorithmic
strategies: Ares, Ceres and Pluton. We use Java and C++ as imple-
mentation languages and Galicia as our development platform.

Our results show that implementations in C++ are significantly faster,
and that in most cases Pluton is the best algorithm.

Keywords: Galois Sub-hierarchy, AOC-Poset, Performance Analysis.

1 Introduction

Formal concept analysis (FCA) has been used in a broad spectrum of research
fields, such as knowledge representation, data mining, machine learning, soft-
ware engineering and databases. The main drawback of concept lattices is that
the number of concepts may be of much larger size than the relation (or even
exponential in the size of the relation). It is therefore feasible, when this prob-
lem is encountered, to use a polynomial-size representation of the lattice while
preserving the most relevant information.

One of the approaches, which has proved useful in practice, is to restrict the
lattice to the concepts which introduce a new object or a new property. This
idea is the basis for two very similar structures called the Galois Sub-hierarchy
(GSH) and the Attribute Object Concept poset (AOC-poset). The Galois Sub-
hierarchy has been introduced in the software engineering field by Godin et
al. [GM93] for class hierarchy reconstruction and successfully applied in later
research work [GMM+98], [AYLCB96], [HDL00], [DHL+02]. The AOC-poset
has been used in applications of FCA to non-monotonic reasoning and domain
theory [Hit04] and to produce classifications from linguistic data [OP02], [Pet01].
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These structures are interesting not only as a feasible alternative to oversized
concept lattices, but also as a conceptual improvement, as human perception of a
problem is enhanced by an easy visualization of a restricted number of elements.

As the size of the input may still be large, naturally it is important to have ef-
ficient Galois Sub-hierarchy-building algorithms to work with. There are several
efficient Galois Sub-hierarchy-building algorithms, with very different algorith-
mic strategies, and with theoretical worst-time complexity analyses which are
difficult to compare. Kuznetsov et al. [KO02] propose a rather extensive imple-
mentative comparative analysis of lattice-building algorithms, but to our knowl-
edge the only existing work on comparing algorithms related to GSH-building
algorithms is proposed by Godin et al. [GC99], comparing Ares and ISGOOD,
which is restrictive, as it builds only the attribute elements of the Galois Sub-
hierarchy.

In this paper we address the issue of comparing the execution times of the
three main Galois Sub-hierarchy-building algorithms: Ares, Ceres and Plu-

ton, in order to determine which algorithm can be recommended to a user
and in which case. This choice is meaningful because these three algorithms are
used as tools with a strong user-based interaction, where the response time is a
very important factor. The performance factors we tested are the density of the
relation and the number of objects and attributes.

The paper is structured as follows: Section 2 introduces the main terminology
of Galois Sub-hierarchy. Section 3 explains how the three Galois Sub-hierarchy-
building algorithms work. Section 4 details the experimental approach which we
used. Section 5 presents our evaluation of the results. We conclude in Section 6.

2 Notations and Definitions

In this section, we introduce the main terminology necessary to understanding
how the Galois Sub-hierarchy algorithms work. We do not explain in detail the
basics of FCA features but focus more on Galois Sub-hierarchy definitions. We
refer the reader to Ganter et al. [GW99] for a complete introduction to partial
orders and lattices.

In FCA, a formal context is a triple K = (G, M, I) where G and M are sets
(objects and attributes respectively) and I is a binary relation, i.e., I ⊆ G×M .
Figure 1(left) shows context K = ({1, 2, 3, 4, 5, 6}, {a, b, c, d, e, f, g, h}, I).

For a set A ⊆ G of objects, we define A′ := {m ∈ M |gIm for all g ∈ A}
(the set of attributes common to the objects in A). Correspondingly, for a set
B ⊆ M , we define B′ := {g ∈ G|gIm for all m ∈ B} (the set of objects which
have all attributes in B). Then, a formal concept of the context (G, M, I) is a
pair (A, B) with A ⊆ G, B ⊆M , A′ = B and B′ = A. A is called the extent and
B the intent of the concept (A, B). B(G, M, I) denotes the set of all concepts of
the context (G, M, I). Figure 1 (right) shows the concept lattice corresponding
to our example.

The concepts CO = {γo = (o′′, o′)|o ∈ G} are called the object concepts of o,
and the concepts CA = {μa = (a′, a′′)|a ∈ A} are called the attribute concepts.
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a b c d e f g h

1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

Fig. 1. Left: Binary relation of a context K - Right: Concept lattice B(G, M, I)

The object concept which corresponds to object o, γo, is the smallest concept
with o in its extent, and dually, the attribute concept which corresponds to
attribute a, μa, is the greatest concept with a in its intent. The Galois Sub-
hierarchy is the sub-order of the lattice made out of the set CO ∪ CA and
the restriction of the lattice order to that set [HDL00]. Figure 1 (right) shows
the lattice corresponding to context K. Figure 2 (left) shows the Galois Sub-
hierarchy of the context introduced in Figure 1. As we see, in the Hasse diagram
of a Galois Sub-hierarchy, empty concepts are omitted. Thus, in the paper we
use the notation (4,e) instead of (14,de), and use the terms simplified intent (for
(4)) and simplified extent (for (e)), as well as simplified concept (for (4, e)) as
shown in Figure 2.

Fig. 2. Left: Galois Sub-hierarchy GSH(I). (b) denotes the concept (123,b) or its sim-
plified form (∅,b) - Right: Galois Sub-hierarchy after addition of object 7 (Refer to
Section 3 in ARES algorithm)

3 The Algorithms

This section briefly explains the basic features of the Galois Sub-hierarchy-
building algorithms which we analyze in this paper. The reader is referred to
the cited papers for further details on the corresponding algorithms. We will use
the example from Figure 1 to illustrate our explanations.
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PLUTON

Pluton is composed of three algorithms: TomThumb, ToLinext, ToGSH.
TomThumb produces an ordered list of the simplified extents and intents in
Berry et al. [BHM+05]. This ordered list maps to a linear extension of the Galois
Sub-hierarchy. Algorithm ToLinext then searches the ordered list to merge
pairs consisting of a simplified extent and a simplified intent pertaining to the
same concept, in order to reconstruct the elements of the Galois Sub-hierarchy.
Algorithm ToGSH is then used to compute the edges of the Hasse diagram
(transitive reduction) of the Galois Sub-hierarchy.

Algorithm TomThumb uses a sub-algorithm which computes either an or-
dered partition of objects into simplified extents, or dually a partition of
attributes into simplified intents. The order on the simplified closed sets (simpli-
fied extents or intents) maps to a linear extension of the Galois Sub-hierarchy.

Algorithm TomThumb uses partition refinement to construct ordered parti-
tions into simplified intents and extents, by using a list of attributes to partition a
list of objects (or vice-versa). If for example the list of attributes (a, b, c, d, e, f, g,
h) is used to refine the class of objects (123456), the first step using attribute
a will split class (123456) into the two classes (236, 145), as a′ = {2, 3, 6}.
The process is then repeatedly applied by the next attribute to each of the
current classes. Berry et al. [BHM+05] give full details as well as a detailed
example.

Algorithm TomThumb proceeds in three steps:

– Computation of an ordered partition Le of the simplified extents, using any
ordering of the properties as input.
For example, using the ordering (a, b, c, d, e, f, g, h) of the attributes, the
output is Le = {(2),(3),(6),(1),(5),(4)}

– Computation of an ordered partition Li of the simplified intents, using Le

as input. In our example, using Le = {(2),(3),(6),(1),(5),(4)} as input, the
output is Li = {(d),(e),(c),(b),(ah),(g),(f)}

– The two partitions are then merged to produce a list of simplified closed
sets which can be mapped to a linear extension of the Galois Sub-hierarchy,
e.g. List = {(2),(3),(f),(g),(6),(ah),(1),(b),(5),(c),(4),(e),(d)}, which repre-
sents the linear extension {(2),(3,f),(g),(6,ah),(1),(b),(5),(c),(4,e),(d)} of the
Galois Sub-hierarchy.

Algorithm ToLinext assembles simplified (non-empty) extent Er and simpli-
fied intent Ir pertaining to a same concept, that is such that for complete extent
and intent, Er = (Ir)′. Only pairs formed by an extent directly followed by an
intent need be considered. For a simplified extent Er = List[i], we check that:
E = (List[i])′ = I = (List[i + 1])′′. In our example, the result is:
L = {(2),(3,f),(g),(6,ah),(1),(b),(5),(c),(4,e),(d)}, but to apply the algorithm
toGSH we consider a form of L where simplified empty sets are added:
L = {(2,∅),(3,f),(∅,g),(6,ah),(1,∅),(∅,b),(5,∅),(∅,c),(4,e),(∅,d)}.
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Algorithm ToGSH builds the Hasse diagram of the Galois Sub-hierarchy by
computing the edges of the graph. The ordering into an linear extension L is used
to reduce the number of comparisons, as by definition of a linear extension, an
edge can only go from a concept (for example (2,∅) to a concept which appears to
its right in the list (for example (∅,c))). Once an edge is detected, sub-concepts
of the origin are marked in order to avoid already visited concepts linked by
transitive edges.

Theoretical complexity. In Berry et al. [BHM+05], Tom Thumb’s time com-
plexity is analyzed as in O(|J |). A brute force implementation of ToLinext has
a complexity in O((|O| + |A|)3). Fura et al. [FLPP05] evaluates the complexity
of ToGSH as O((|O| + |A|)2 ×max(|O|, |A|)2). It is worth noting that in the
Galicia implementation of Pluton, whole extents and intents are computed in
a simple pass of the Galois Sub-hierarchy.

CERES

Ceres mixes the computation of the concepts and that of the Hasse diagram.
Concepts are computed respecting an order which maps to a linear extension
of the Galois Sub-hierarchy. First, the columns of I are sorted by decreasing
number of crosses to generate the concepts of CA by decreasing extent size.
In the example shown in Figure 1, columns could be ordered as follows: a, b,
c, d, h, e, g, f . The strategy is then to compute CA by groups of concepts
which have the same extent and adding concepts of CO \CA to the GSH under
construction, when their intent is covered by the intents of the CA concepts
previously computed. Extents and simplified intents of CA concepts, as well
as closed sets of CO concepts, are computed using I. Extent inclusion is used
to compute edges during a top-down traversal of the current Hasse diagram.
Simplified extents and intents of CO concepts are computed by propagation
after edge construction. A simplified execution of the algorithm on our example
could be:

– Column size = 3: concepts (6,ah),(b),(c),(d) are generated and included in
the Hasse diagram (no edges at this step).

– Concept (5) can be added because attributes c and d have already been
found. It is linked to (c) and (d).

– Column size = 2: concepts (4,e) and (g) are generated and linked respectively
to (d), and (6,ah), (b).

– Concepts (2) and (1) are added and linked respectively to (g),(c) and (b),(5),
(4,e).

– Column size = 1: concept (3,f) is generated and linked to concept (g).

Theoretical complexity. The time complexity of Ceres is in O(|O| × (|O|+
|A|)2) [Leb00].
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ARES

Ares constructs the Galois Sub-hierarchy in an incremental fashion. At each
step, it considers the Galois Sub-hierarchy GSH(I) associated with (G, M, I) as
well as a new formal object o given with its attribute set Ao = o′. The result of
the algorithm is the Galois Sub-hierarchy GSH(I ′) for (G, M ′, I ′), A′ = A∪{o},
I ′ = I ∪ {(o, x)|x ∈ Ao}. The initial GSH is traversed using a linear extension,
ensuring that a concept is explored after all its superconcepts. Let us denote by
C the current (explored) concept and by RIo the attribute set which at the end
is the simplified intent of the concept introducing o (o is in its simplified extent).
Discarding cases such that the intersection between C’s intent and o′ is empty,
four main cases may occur:

– Case 1: C’s intent is exactly o′. o is added to C’s extent. The Hasse diagram
remains unchanged.

– Case 2: C’s intent is strictly included in o′. C is or will be a superconcept
of o′ (the algorithm stores this information). o is added to C’s extent. The
attributes of C are removed from RIo.

– Case 3: C’s intent includes o′. C is a sub-concept of γo. C either inherits all
o’s attributes, or some of o’s attributes are in C’s simplified intent. A new
concept Co with the intent o′ is created if needed. Co is introduced in the
Hasse diagram between C and the C’s superconcepts which also satisfied
Case 2. Intents and extents, as well as their simplified forms, are updated.

– Case 4: C’s intent and o′ cannot be compared by set inclusion. In this situ-
ation, a new concept can be needed to factorize the common attributes not
inherited by C. This new concept is introduced in the Hasse diagram be-
tween C and the C’s superconcepts which also satisfied Case 2. RIo, intents
and extents, as well as their simplified forms, are updated.

If during the exploration, the algorithm did not find an initial concept whose
intent is o′, it is necessary to create a new concept Co = o′. Co’s extent is o,
Co’s simplified intent is RIo (which is o′ minus the attributes found during the
GSH exploration). Co is linked to initial or newly created concepts when their
intent is included in o′. In every modification of the Hasse diagram, the algorithm
removes transitivity edges as necessary. Meanwhile, when simplified intents are
modified, the algorithm checks if for a concept both extent and intent are empty,
and if so, the concept is removed.

Let us examine the addition of new object 7 with A7 = 7′ = {a, c, g, h}. The
Galois Sub-hierarchy is traversed by successively analyzing: concept (6,ah) (Case
2), concept (b) (no intersection between intents), (c) (Case 2), (d) (no intersec-
tion between intents), (g) (Case 4), a new super-concept of concept (g) and o′

is created to factorize the common attribute g, it is attached as a sub-concept
of (6,ah) and (c) and as a super-concept of (g) which becomes extent-empty
and intent-empty and will be removed at the end), concept (2) (Case 3), con-
cept (3,f) (Case 4, but the common attributes are inherited), etc. The Galois
Sub-hierarchy integrating object 7 is shown in Figure 2.
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Theoretical complexity. The time complexity of Ares is in O(|O| × |(w ×
a + m)), where w is the width of the Galois Sub-hierarchy (i.e. the maximum
number of pairwise non-comparable elements), a is the maximum size for an
intent and m the number of edges of the Hasse diagram [DDHL94].

4 Experimental Setup

In this section, we give the parameters we use in our experimentations, and
explain our approach.

Parameters used. We have done the experiments using Galicia [Gal]. Galicia
is a Java-based platform dedicated to constructing lattices. It offers to FCA
researchers advanced tools for performance studies and an open environment
to new lattices-related techniques. Galicia is implemented in Java because it
ensures a high portability of the entire system. Thus Java was our first choice
in the implementation of algorithms Ares, Ceres and Pluton. Because of the
first results in performances, we considered C++ as a second choice, as it is
known as a language with a good processing speed.

In the rest of the paper, we name as Ares, Ceres and Pluton the algorithms
implemented in Java, and Ares++, Ceres++ and Pluton++ the algorithms im-
plemented in C++. We must remark that all the algorithms were implemented
by the same programmer [Per05], so that differences in the implementation style
should not be a factor.

Tests: Random Generation of Binary Relations. To perform our experiments
we generate a test suite using randomly generated binary relations. Similarly to
Kuznetsov et al. [KO02], the binary relations were randomly generated using the
following parameters: the number of objects, the numbers of attributes, and the
binary relation density defined as follows:

|J |
|O| × |A| × 100

In fact, we use the complexity of the binary relation, defined as follows:
√( |J |
|O|

)2

+
( |J |
|A|

)2

which is equal to the density multiplied by
√|O|2 + |A|2 divided by 100.

Test Suite. We generate a test suite considering the variability of the density,
the number of objects and the number of attributes, as follows:

– Square binary relations (the same number of objects and attributes) with
variable density. In this case, the numbers of objects and attributes are 500
and the density varies from 2 to 82.



Performances of Galois Sub-hierarchy-building Algorithms 173

– Variable number of objects with fixed number of attributes and density. In
this case, the number of attributes is 500, the density is 50 and the number
of objects varies from 1000 to 4800 incremented by 200.

– Variable number of attributes with fixed number of objects and density. In
this case, the number of objects is 500, the density is 50 and the number of
attributes varies from 1000 to 4800 incremented by 200.

Evolutive Approach of Experiments. We developed the experiments in three
phases:

– First Phase: We compared the results between Ares, Ceres and Pluton only
implemented in Java. In this specific phase, we used HashSet and ArrayList
of the Java language API as our main data structures.

– Second Phase: We compared the results between the implementations in
Java (Ares, Ceres and Pluton) and those in C++ (Ares++, Ceres++ and
Pluton++). In this specific phase, we used set<> and vector<> of the C++
language API as our main data structures.

– Third Phase: We compared the results between Ares, Ceres, Pluton, Ares++,
Ceres++, Pluton++ and their dual versions, where we transposed the matri-
ces representing the binary relations, meaning that the rows of the non-dual
versions are made into columns in the dual versions, and viceversa.

5 Evaluation and Results1

5.1 First Phase

In this first phase, we will only consider the Java implementations of the algo-
rithms. Our results show that each algorithm is interesting in its own right for
certain input parameters:

– Pluton is the best if there is no difference between the number of objects
and the number of attributes (shown in Figure 3).

– Ares is the best if we vary the number of objects (shown in Figure 4).
– Ceres is the best if we vary the number of attributes (shown in Figure 5).

In this first phase, when considering square matrices, we see a common inter-
section point (ca. (180,120)) where all the algorithms converge, and afterwards
we observe major differences in terms of performance. The common point rep-
resents a density of around 30% of the binary relation, corresponding to the
complexity of 180. This means that up to 30% of the binary relation, Ceres and
Ares (with a small interval of difference) are the best algorithms. But with
a larger density, both algorithms increase their time, whereas Pluton keeps
its monotone shape. From this first phase, with a square matrix, we can con-
clude that Pluton is not influenced by the density, and that with a low density,
Ares and Ceres are the most suitable.
1 The interested reader can find a colored version of the figures in the original version

of the paper in http://www.lirmm.fr/∼huchard/Huchard/pub.frametop.html
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Fig. 3. Test results with a square matrix with variable density

Fig. 4. Test results with a variable number of objects

When considering matrices with a variable number of attributes, we see that
the differences in performance between the three algorithms are minimal when
we vary the number of attributes between 1000 and 2000 (meaning 500 and
1000 attributes per object) with a density of 50% of the binary relation. After
this point, we see that Ceres is almost a monotone function, while Ares and
Pluton increase their times. From this we can infer that Ceres is the most
suitable algorithm.

When considering matrices with a variable number of objects, we see no differ-
ences in performance between Ares and Pluton with a complexity from 0 to 680
with a density of 50% and 50 attributes. However, Ceres increases its time as a
power function (with an exponent larger than 1) from the minimal complexity.
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Fig. 5. Test results with a variable number of attributes

In the last two cases, we do not see critical points where the algorithms change
their performances.

5.2 Second Phase

In this second phase, we consider Java and C++ implementations of the algo-
rithms: Ares, Ceres, Pluton, Ares++, Ceres++ and Pluton++ by completing the
results of the first phase with C++ implementations. We see in Figures 6, 7 and
8 that:

– Pluton++ is the best algorithm when considering square matrices (shown
in Figure 6), and when considering a variable number of objects (shown in
Figure 7).

– Pluton++ and Ceres are the best ones when considering a variable number
of attributes (shown in Figure 8).

Let us discuss the main issues we discover in this phase. Within the context
of square matrices (shown in Figure 6), for low densities (up to a complex-
ity of 150, which means 22% of density of binary relation), all the algorithms
- except Pluton and Pluton++ - present a monotone increasing function, while
Pluton and Pluton++ present almost constant functions. From the complexity of
150, we see three branches of algorithms: Ares++ and Ceres, Ares and Ceres++,
Pluton and Pluton++. In the first group, the performances of the algorithms in-
crease as power functions (with an exponent larger than 1). In the second group,
the performances are monotone functions; and in the third group, Pluton and
Pluton++ remain as almost constant functions. Let us now compare the versions
of the algorithms implemented in Java and in C++. If we consider large densi-
ties, we see that there is less difference between Ares and Pluton than between
Ares++ and Pluton++, but the situation is reversed in the case of Ceres and
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Fig. 6. Test results with a square matrix

Fig. 7. Test results with a variable number of objects

Pluton. There is less difference between Ceres++ and Pluton++ than between
Ceres and Pluton.

Generally, we see an improvement of the C++-based algorithms compared to
their versions in Java, except in the case of Ares++. The major improvement in
Pluton++ illustrates how the API in C++ influences the performances.

When considering a variable number of objects, we see the results in Fig-
ure 7. We observe that the implementations in C++ significantly improves the
results, as the slowest algorithm in C++ (Ares++) has a better performance than
the fastest one in Java (Ares). Compared to the results of the square matrix,
Ares++ improves its performance. Ceres++ and Ares++ seem to have equivalent
performances and Pluton++ remains - so far - the fastest. As a last issue, we see
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that there is little difference between the implementations in C++ compared to
the implementations in Java, although the difference between the algorithms is
very significant.

Regarding a variable number of attributes, Figure 8 shows the results. We ob-
serve that there are pairs of algorithms (Ares++ and Ares , Ceres and Ceres++ )
that have the same performance with the same variations (with some improve-
ments in the Java version). We also see that the difference between Pluton and
Pluton++ is significant. Pluton is the slowest while Pluton++ is the fastest.
In addition to this, Ceres++ seems influenced by the increase in the number
of attributes while Ceres is not. We should remark that, around the complex-
ity of 2400 (meaning 50 objects, 4800 attributes and a density of 50%), there
is an important difference in the performances of Ares and Ares++ regarding
complexities smaller than 2400.

Fig. 8. Test results with a variable number of attributes

As a summary of this phase, we confirm that the API in C++ mostly has a
meaningful positive influence on the performances of the algorithms.

5.3 Third Phase

In this phase we decided to test the performances of the algorithms considering
the dual versions of the binary relations. When we talk about the dual versions
-as said previously-, it does not imply changes in the algorithms, but in the way
we deal with the data. In the dual versions, we transpose the matrices repre-
senting the binary relations. To perform the experiments, we vary the number
of attributes -as we have done in the previous phases. Afterwards, we obtain
the dual versions, meaning that we obtain matrices with a variable number of
objects. Then we run the algorithms for non-dual binary relations, and for dual
binary relations. Figure 9 shows the corresponding results. In order to detail
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the local results in the lower part of Figure 9, we provide a zoomed version in
Figure 10. It is worth remarking that in this case, we do not analyze the square
matrices, because the matrix transposition (to analyze the dual version) has
the same characteristics in our experiments. Despite the fact that Figure 10 is
crowded, we see that it represents the superposition of Figure 7 and Figure 8.

Fig. 9. Test results with a variable number of attributes and their dual versions

From this phase, we observe that Pluton has the same performance if we
vary the number of attributes or objects, and the same holds for Pluton++.
Pluton++ always has the best performance.

Fig. 10. Zoom of Figure 9
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However, Ceres changes its performance considerably if we vary the number
of objects or the number of attributes. It does not have a good performance
when the objects vary but it is faster than the C++ version in the case of at-
tributes. However, Ceres++ is slower when the number of objects varies than
when the number of attributes varies. Ares and Ares++ have the same perfor-
mance. Ares++ is better when the number of objects varies.

6 Conclusions and Future Work

This paper compares three different Galois Sub-hierarchy-building algorithms
(Ares, Ceres and Pluton) implemented in Java and C++. We see that in
most cases, Pluton++ is the most efficient and stable algorithm. We also see that
the API in C++ affects the results of the computation time of these algorithms.
It is worth mentioning that for low densities, all algorithms are useful, and the
significant differences in performance occur when the binary relations have large
densities. Clearly this analysis can guide the user in his/her choice.

In the future, we plan to extend the analysis to similar algorithms, such as the
incremental algorithm ISGOOD [GMM95] and the global algorithm proposed in
the work of Mineau et al. [MG95], which build only CA concepts. Besides this, we
propose a profiling of all these algorithms, in order to see which are the critical
parts that influence the concepts calculation and performance, taking into ac-
count the fact that each algorithm follows a different lattice-building algorithm.
As a last issue, we plan to implement the algorithms on another platform (such
as Smalltalk/VisualWorks) to see if the C++ implementations are still the best
in terms of performance.
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Abstract. In [1] a generalisation of Formal Concept Analysis was intro-
duced with data mining applications in mind, K-Formal Concept Anal-
ysis, where incidences take values in certain kinds of semirings, instead
of the standard Boolean carrier set. A fundamental result was missing
there, namely the second half of the equivalent of the main theorem of
Formal Concept Analysis. In this continuation we introduce the struc-
tural lattice of such generalised contexts, providing a limited equivalent
to the main theorem of K-Formal Concept Analysis which allows to in-
terpret the standard version as a privileged case in yet another direction.
We motivate our results by providing instances of their use to analyse
the confusion matrices of multiple-input multiple-output classifiers.

1 Motivation: The Exploration of Confusion Matrices
with K-Formal Concept Analysis

In pattern recognition tasks, when a classifier is provided training data in the
form of feature vectors tagged with an input pattern set and produces for each
vector a tag within an output pattern set, the performance of the classifier can
be gleaned from the collection of pairs (gi, mj) of one input tag, gi, for the
input data and one output tag, mj , produced by the classifier. These results are
aggregated into a confusion matrix, T , whose element Tij gives a “measure” of
the joint event (G = gi, M = mj), “providing an input pattern gi to the classifier
who then produces an output pattern mj”.

In the pattern recognition community we often encounter methods that use
confusion matrices to analyse classification results. However, most of the times
the analysis is manual and limited to the (human-based) pondering of a confu-
sion matrix-representation like the one depicted in figure 1, where the warmer,
brighter (resp. cooler, darker) colour hues are designed to be related to high oc-
currence (resp. to low occurrence) of events. Often, this type of analysis is used
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Fig. 1. Confusion matrix of the desired transformation of English phoneme labels of
speech frames versus their true Mandarin phoneme labels

to bootstrap existing classifiers in order to obtain even better classification fig-
ures or simply to understand the underlying principles of the methods employed
in designing the classification. In particular, in speech recognition, the designer
of a system is challenged to find in this type of representation meaningful or sys-
tematic confusions to determine to what degree the behaviour of an automatic
system differs from human performance.

K-Formal Concept Analysis was introduced in [1] as a generalisation of stan-
dard Formal Concept Analysis in the sense that incidences R ∈ Kn×p repre-
sented as matrices may take values in an idempotent, reflexive semifield K and
we take R(i, j) = λ to mean “object gi has attribute mj in degree λ.” Ade-
quate analogues of basic objects in Formal Concept Analysis become therefore
available.

Two serious obstacles may prevent widespread adoption of K-Formal Concept
Analysis as a data exploration technique complementary to the standard theory:
on the one hand, the K-Formal Concept Analysis analogue of the main theorem
of Formal Concept Analysis is incomplete and this may worry the user willing
to be on a sound mathematical ground; on the other hand, [1] did not provide
an algorithm for constructing the lattice of a K-valued formal context, which
prevents its use as a data-intensive exploration procedure.

In this paper, we try to explore further whether K-Formal Concept Analysis is
a proper generalisation of standard Formal Concept Analysis for finite contexts
and to pave the way for the completion of the main theorem. In order to do so
we introduce the structural lattice of a K-Formal Context and try to relate it to
the Concept Lattice of a Formal Context.

In section 2 we first review the theory of idempotent semirings and their
semimodules with a view to providing the necessary objects for our discussion.
In section 3.1 we present a summary of the theory of K-Formal Concept Anal-
ysis presented in ([1], §. 3) and add a new theoretical construct, the structural
lattice of a semimodule over an idempotent, reflexive semiring. We demonstrate
in section 4 the use of this new tool to analyse confusion matrices of multiple
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input-multiple output classifiers, which turn out to be amenable to K-Formal
Concept Analysis modelling, and finish with a summary of contributions and an
outlook.

2 Mathematical Preliminaries: Semimodules over
Idempotent, Reflexive Semifields as Vector Spaces

2.1 Idempotent Semirings

A semiring K = 〈K, ⊕, ⊗, ε, e〉 is an algebraic structure whose additive struc-
ture, 〈K, ⊕, ε〉, is a commutative monoid and the multiplicative one, 〈K, ⊗, e〉,
a monoid whose multiplication distributes over addition from right and left and
whose neutral element is absorbing for ⊗, ε ⊗ x = ε, ∀x ∈ K [2] . On any
semiring K left and right multiplications can be defined:

La : K → K Ra : K → K (1)
b 	→ La(b) = ab b 	→ Ra(b) = ba

A commutative semiring is a semiring whose multiplicative structure is commu-
tative, and a semifield one whose multiplicative structure over K\{ε} is a group.
Thus, compared to a ring, a semiring which is not a ring lacks additive inverses.

An idempotent semiring K is a semiring whose addition is idempotent: ∀a ∈
K, a ⊕ a = a . All idempotent commutative monoids (K, ⊕, ε) are endowed with
a natural order ∀a, b ∈ K, a ≤ b ⇐⇒ a ⊕ b = b , which turns them into
join-semilattices with least upper bound defined as a ∨ b = a ⊕ b . Moreover, for
the additive structure of and idempotent semiring K the neutral element is the
infimum for this natural order, εK = ⊥.

An idempotent semiring K is complete, if it is complete as a naturally ordered
set and left (La) and right (Ra) multiplications are lower semicontinuous, that
is, they commute with joins over any subset of K. Therefore, complete idem-
potent semirings, as join-semilattices with infimum are automatically complete
lattices [3] with join (∨, max or sup) and meet (∧, min or inf) connected by the
equivalences: ∀a, b ∈ K, a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a .

Example 1. 1. The Boolean semiring B = 〈 B, ∨, ∧, 0, 1 〉, with B = {0, 1} , is
complete, idempotent and commutative.

2. The completed Maxplus semiring Rmax,+ = 〈 R ∪ { ±∞ }, max, +, −∞, 0 〉 ,
is a complete, idempotent semifield when defining −∞ + ∞ = −∞, so that
εK ⊗ �K = εK for K ≡ Rmax,+

3. The completed Minplus semiring Rmin,+ = 〈 R ∪ { ±∞ }, min, +, ∞, 0 〉 is a
complete, idempotent semifield with a similar completion to that of ex. 2 with
∞ + (−∞) = ∞, that is εK ⊗ �K = εK for K ≡ Rmin,+.
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2.2 Idempotent Semimodules: Basic Definitions

A semimodule over a semiring is defined in a similar way to a module over a
ring [4,5,6]1: a left K-semimodule, X = 〈X, ⊕, εX〉, is an additive commutative
monoid endowed with a map (λ, x) 	→ λ · x such that for all λ, μ ∈ K, x, z ∈ X ,
and following the convention of dropping the symbol for the scalar action and
multiplication for the semiring we have:

(λμ)x = λ(μx) εKx = εX (2)
λ(x ⊕ z) = λx ⊕ λz eKx = x

The definition of a right K-semimodule, Y, follows the same pattern with the
help of a right action, (λ, y) 	→ yλ and similar axioms to those of (2.)

A (K, S)-semimodule is a set M endowed with left K-semimodule and a right
S-semimodule structures, and a (K, S)-bisemimodule a (K, S)-semimodule such
that the left and right multiplications commute. For a left K-semimodule, X ,
the left and right multiplications are defined as:

LK
λ : X → X RX

x : K → X (3)

x 	→ LK
λ (x) = λx λ 	→ RX

x (λ) = λx

And similarly, for a right K-semimodule. If X , Z are left semimodules a mor-
phism of left semimodules or left linear map F : X → Z is a map that preserves
finite sums and commutes with the action: F (λv ⊕ μw) = λF (v) ⊕ μF (w), and
similarly, mutatis mutandis for right linear maps of right semimodules.

The elements of a semimodule may be conceived as vectors2. Given a semiring
K and a left K-semimodule X , for each finite, non-void set W ⊆ X , there exists
an homomorphism α : KW → X, f 	→

⊕
w∈W f(w)w . Moreover, α induces a

congruence of semimodules ≡α on KW , by f ≡α g ⇐⇒ α(f) = α(g) . Then
W is a set of generators or a generating family precisely when α is surjective, in
which case any element x ∈ X can be written as x =

⊕
w∈W λww, and we will

write X = 〈W 〉K, that is, X is the span of W . A semimodule is finitely generated
if it has a finite set of generators.

For individual vectors, we say that x ∈ W is dependent (in W ) if x =⊕
w∈W\{x } λww otherwise, we say that it is free (in W ). The set W is lin-

early independent if and only if ≡α is the trivial congruence, that is, when⊕
w∈W f(w)w =

⊕
w∈W h(w)w ⇐⇒ f = h, otherwise, W is linearly depen-

dent. Let kerα = { f ∈ KW | α(f) = 0 }; then W is weakly linearly independent
if and only if kerα = {0}, otherwise it is weakly linearly dependent.

A basis for X (over K) is a linearly-independent set of generators, and a
semimodule generated by a basis is free. By definition, in a free semimodule
X with with basis { xi }i∈I each element x ∈ X can be uniquely written as
x =

⊕
i∈I αixi, with [ai]i∈I the co-ordinates of x with respect to the basis. A

1 We are following essentially the notation of [4].
2 Most of the material in this section is from [5], §17, and [7,8,9].
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weakly linearly-independent set of generators for X is a weak basis for X (over
K). The cardinality of a (weak) basis is the (weak) rank of the semimodule.

In this framework, notions in usual vector spaces have to be imported with
care. For instance, the image of a linear map F : X → Y is simply the semim-
odule ImF = { F (x) | x ∈ X }, but it is in general not free.

Given a free semimodule X with basis { xi }i∈I , for each family { yi }i∈I of ele-
ments of an arbitrary semimodule Y there is a unique morphism of semimodules
F : X → Y such that F (xi) = yi, ∀i ∈ I, namely F

(⊕
i∈I λixi

)
=

⊕
i∈I λiyi

and all the linear maps Lin(X , Y) are obtained in this way ([7], prop. §73; [5],
prop. §17.12). That is, linear maps from free semimodules are characterised by
the images of the elements of a basis.

On the other hand, a semiring K has the linear extension property if for all free,
finitely generated K-semimodules X , Y, for all finitely generated subsemimodules
Z ⊂ X and for all F ∈ Lin(Z, Y), there exists H ∈ Lin(X , Y) such that
∀x ∈ X, H(x) = F (x) . The importance of this property derives from the fact
that when the linear extension property holds, each linear map between finitely
generated subsemimodules of free semimodules is represented by a matrix. In
particular, when it holds for free, finitely generated (left) semimodules, X and Y
with bases { xi }i∈I and { yj }j∈J , each linear map is characterised by the n × p-
matrix R = (F (xi)j), which sends vector x = {xi}n

i=1 to the vector F (x) �
((xR)1, . . . , (xR)p).

2.3 Semimodules over Idempotent Semirings

In this section all semimodules will be defined over an idempotent semifield.
Recall that examples of these are B, the Boolean semifield and the completed
maxplus and minplus semifields.

Idempotency and Natural Order in Semimodules. A left, right K-semi-
module X over an idempotent semiring K inherits the idempotent law, v ⊕ v =
v, ∀v ∈ X , which induces a natural order on the semimodule by v ≤ w ⇐⇒
v ⊕ w = w, ∀v, w ∈ X whereby it becomes a ∨-semilattice, with εX the mini-
mum. In the following we systematically equate idempotent K-semimodules and
semimodules over an idempotent semiring K . When K is a complete idempo-
tent semiring, a left K-semimodule, X is complete (in its natural order) if it
is complete as a naturally ordered set and its left and right multiplications are
(lower semi)continuous. Trivially, it is also a complete lattice, with join and meet
operations given by: v ≤ w ⇐⇒ v ∨ w = w ⇐⇒ v ∧ w = v . This extends
naturally to right- and bisemimodules.

Example 2. 1. Each semiring, K, is a left (right) semimodule over itself,
with the semiring product as left (right) action. Therefore, it is a (K, K)-
bisemimodule over itself, because both actions commute by associativity. Such
is the case for the Boolean (B, B)-bisemimodule, the Maxplus and the Minplus
bisemimodules. These are all complete and idempotent.
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2. For n, m ∈ N, the set of matrices Kn×p is a (Kn×n, Kp×p)-bisemimodule
with matrix multiplication-like left and right actions and component-wise
addition, the set of column vectors Kp×1 is a (Kp×p, K)-bisemimodule and
the set of row vectors K1×n a (K, Kn×n)-bisemimodule with similarly defined
operations. If K is idempotent (resp. complete), then all are idempotent (resp.
complete) with the component-wise partial order their natural order.

As in the semiring case, because of the natural order structure, the actions of
idempotent semimodules admit residuation: given a complete, idempotent left
K-semimodule, X , we define for all x, z ∈ X , λ ∈ K the residuals:

(
LK

λ

)#
: X → X

(
LK

λ

)#
(z) =

∨
{ x ∈ X | λx ≤ z } = λ\z (4)

(
RX

x

)#
: X → K

(
RX

x

)#
(z) =

∨
{ λ ∈ K | λx ≤ z } = z/x

and likewise for a right semimodule, Y.
There is a remarkable operation that changes the character of a semimodule

while at the same time reversing its order by means of residuation:

Definition 3. Let K be a complete, idempotent semiring, and Y be a complete
right K-semimodule, its opposite semimodule is the complete left K-semimodule

Yop = 〈Y,
op
⊕,

op→〉 with the same underlying set Y , addition defined by (x, y) 	→
x

op
⊕ y = x ∧ y where the infimum is for the natural order of Y, and left action:

K × Y → Y (λ, y) 	→ λ
op→ y = y/λ

Consequently, the order of the opposite is the dual of the original order.

For the opposite semimodule the residual definitions are:

λ
op

\ x =
(
LYop

λ

)#

(x) =
∧

{ y ∈ Y | x ≤ y/λ } = x · λ (5)

x
op

/ y =
(
RYop

y

)#

(x) =
∨

{ λ ∈ K | x ≤ y/λ } = x\y

Note that we can define mutatis mutandis the opposite semimodule of a left
K-semimodule, X , with right action x

op← λ = λ\x . Also, noticing that the first
residual in eq. 5 is in fact an involution we may conclude that the operation of
finding the opposite of a complete (left, right) K-semimodule is an involution:
(Yop)op = Y.

Constructing Galois Connections in Idempotent Semimodules. The
following construction is due to Cohen et al. [4]. Let K be a complete idempotent
semiring; for a bracket 〈· | ·〉 : X×Y → Z between left and right K-semimodules,
X and Y respectively, onto a K-bisemimodule Z and an arbitrary element ϕ ∈ Z,
which we call the pivot, define the maps:

·−ϕ : X → Y x−
ϕ = L#

x (ϕ) =
∨

{ y ∈ Y | 〈x | y〉 ≤ ϕ } (6)

−
ϕ · : Y → X −

ϕ y = R#
y (ϕ) =

∨
{ x ∈ X | 〈x | y〉 ≤ ϕ }
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We have 〈x | y〉 ≤ ϕ ⇐⇒ y ≤ x−
ϕ ⇐⇒ x ≤ −

ϕ y, whence the pair is a
Galois connection between Y and X , (·−ϕ ,−ϕ ·) : X � Y . This construction is
affected crucially by the choice of a suitable pivot ϕ: if we consider the bracket
to reflect a degree of relatedness between the elements of each pair, only those
pairs (x, y) ∈ X × Y are considered by the connection whose degree amounts
at most to ϕ . Therefore we can think of the pivot as a maximum degree of
existence allowed for the pairs.

Recall X and Y are both complete lattices as well as free vector spaces. Note
that the closure lattices X = −

ϕ (Y) and Y = (X )−ϕ do not agree with their
ambient vector spaces in their joins, but only in their meets. To improve on this,
the notion of a left (resp. right) reflexive, (K, ϕ), semiring is introduced in [4]
as a complete idempotent semiring such that (〈· | ·〉 : K × K → K, ϕ) with
〈λ | μ〉 = λμ induces a perfect Galois connection3 under construction (6) for all
λ ∈ K, −(λ−) = λ (resp. (−λ)− = λ .)4 The interest in reflexive semirings stems
from the fact that in such semirings X and Y are actually subsemimodules (that
is their suprema coincide with those) of the corresponding spaces ([4], prop. 28).

Note that ϕ need not be unique: if (K, ϕ) is right (or left) reflexive, for any
λ ∈ K invertible, (K, ϕλ) is left reflexive (and (K, λϕ) is right reflexive.) Finally,
Cohen et al. [4] prove that idempotent semifields are left and right reflexive, and
suggest that for the Boolean semiring we must choose ϕ = 0B, the bottom in the
order. For other semifields any invertible element may be chosen, e.g. ϕ = eK.

Idempotent Semimodules as Vector Spaces. When K is an idempotent
semiring if a K-semimodule has a (weak) basis, it is unique up to a permutation
and re-scaling of the axes, that is a scaling endomorphism ([9], Th. §3.1), x′

i =
λixi , and every finitely generated K-semimodule has a weak basis ([9], Coroll.
§3.6). In particular, let K be an idempotent semifield, then the free idempotent
semimodule with n generators is isomorphic to Kn . Essentially, such free idempo-
tent semimodules are generated by the bases En � {ei}n

i=1 , ei = (δi1, δi2, . . . , δin),
where δij is the Kronecker symbol over K, δii = eK, δij = εK, i �= j.

Importantly, the linear property holds in every idempotent semiring which is
a distributive lattice for the natural order ([7], Th. §83). This is the case for
the semifields B (the Boolean semiring), Rmax,+ and Rmin,+ . Therefore, in such
semimodules, modulo a choice of bases for X and Y, we may identify X ∼= K1×n

and Y ∼= K1×p, and linear maps to matrix transformations Lin(X , Y) ∼= Kn×p,
R : K1×n → K1×p, x 	→ xR . When passing from left to right semimodules this
should read Kp×1 → Kn×1, y 	→ Ry.

Idempotent semimodules have additional properties which make them easier
to work with as spaces: when X is a vector space over an idempotent semiring
K, for a set of vectors, W ⊆ X , the set of finite sums W+ � {

⊕
i wi | wi ∈ W},

is a ∨-subsemilattice of 〈W 〉K . Therefore, the ∨-irreducibles of W , generate the
span of W , 〈J (W )〉K = 〈W 〉K . This makes the ∨-irreducibles an interesting set
to obtain a basis.

3 That is, a pair of mutually inverse isomorphisms.
4 When the pivot is the multiplicative unit ϕ = e we drop it.
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The Projective Space and the Structural Semilattice. Let X be a left
K-semimodule over an idempotent semiring K. The relation x � y ⇔ ∃λ ∈
K, x ≤ λ ⊗ y defines a quasi-order 〈X , �〉 . Since any basis WX is unique up to
a re-scaling map, the Hasse diagram of (WX , �) is independent of the choice of
basis.

Now define the equivalence relation ([7], p. 41), x � y
�⇔ x � y and y � x .

This relation appears already in ([10], p. 2018) and was later considered under
the name of siblinghood relation [11] where two vectors v and w are siblings if
w = λ⊗ v for some λ ∈ K . This is a congruence of ∨-semilattices, therefore [7],
the projective space is the quotient set P(X ) � {[x]� | x ∈ X} (where [x]� the
equivalence class of x ∈ X , is also called the ray of x or the sibling class of x ),
which is also a ∨-semilattice, 〈P(X ), �〉 with the induced order.

For any subset W ⊆ X , let a section of the quotient set W/� , σ : 2X →
X, W 	→ σ(W ) be a set obtained by choosing a single representative from each
sibling class. Note that a section has the order directly induced by �X [11] . It
is now clear that a section of the quotient set of the join irreducibles of a set of
vectors is a (weak) basis of their span σ [J (W )] = 〈W 〉K.

Next, consider the siblinghood relation above and a basis WX :

Definition 4 (Wagneur [10]). Let X be a left K-semimodule over and idem-
potent semifield K with a basis WX . The structural (∨-)semilattice of X , S(X )
is the quotient set of WX + through the siblinghood relation S(X ) � WX+/�.

The following theorem states that the quotient set WX +/� is an intrinsic invari-
ant of X .

Theorem 1 ([10], Th. 2). For any basis WX of a left K-semimodule over and
idempotent semifield K, the quotient map π : WX+ → WX+/�, w 	→ [w]� is
an epimorphism of ∨-semilattices and WX+/� is independent of the particular
choice of basis WX .

Since π is an epimorphism of ∨-semilattices and � a ∨-congruence, the quotient
set of the basis through the siblinghood relation WX /� = {[w]� | w ∈ WX } is
the set of ∨-irreducibles of the quotient set, J

(
WX +/�

)
= WX /� [10].

3 The Structural Lattice of a K-Concept Lattice

3.1 K-Formal Concept Analysis, a Reminder

The following has been adapted from [1] to emphasise the fact that the theory
does not cover the case of unbounded cardinalities5.

Definition 5 (K-valued formal context ). For n, p ∈ N, given two sets of
objects G = {gi}n

i=1, and attributes M = {mj}p
j=1, an idempotent semiring, K,

and a K-valued matrix, R ∈ Kn×p, where R(i, j) = λ reads as “object gi has
attribute mj in degree λ” and dually “attribute mj is manifested in object gi to
degree λ”, the triple (G, M, R)K is called a K-valued formal context.
5 This section follows in the tracks of §1.1 of [12].
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Clearly single objects are isomorphic to elements of the space K1×p, that is rows
of R or object descriptions, vectors of as many values as attributes. And dually,
single attributes are isomorphic to elements of the space Kn×1, columns of R or
attribute descriptions. We model (K-valued) sets of objects as row vectors in a
left K-semimodule, x ∈ X ∼= K1×n, and sets of attributes as column vectors in a
right K-semimodule, y ∈ Y ∼= Kp×1 as generalisations of characteristic functions
in the power sets 2G,2M , respectively.

The proof of the following proposition is crucial for future argumentation,
hence we reproduce it in full:

Proposition 2. Let (K, ϕ) be a reflexive, idempotent semiring. For a K-valued
formal context (G, M, R)K, with n, p ∈ N, there is at least one Galois connection
between the lattices of (K-valued) sets of objects K1×n and attributes Kp×1 .

Proof. Recall that X = K1×n is a left semimodule and Y = Kp×1 a right semim-
odule, whence X op and Yop are right and left semimodules, respectively, whose
multiplications are R

op← x = xt\R and y
op→ R = R/yt . We build a new bracket

over the opposite semiring Kop as given by 〈y | x〉R = y
op→ R

op← x = xt\R/yt.
Therefore, by the construction of section 2.3 the following maps form a Galois
connection (·−ϕ ,−ϕ ·) : Yop � X op :

y−
ϕ =

∧
{ x ∈ X | 〈y | x〉R≥ϕ } =

(
y

op→ R
) op

\ ϕ (7)

−
ϕ x =

∧
{ y ∈ Y | 〈y | x〉R≥ϕ } = ϕ

op

/
(
R

op← x
)

In fact, in an idempotent semifield we are guaranteed enough ϕ to build as many
connections as necessary: choose any invertible λ ∈ K, so that ϕ = λ ⊗ eK . ��

Definition 6 (ϕ-polars). Given a reflexive, idempotent semiring (K, ϕ) and a
K-valued formal context (G, M, R)K satisfying the conditions of proposition 2,
we call ϕ-polars the dually adjoint maps of the corresponding Galois connection
of equation (7.)

However, in this dualised construction the pivot describes a minimum degree of
existence required for pairs (x, y) ∈ X × Y to be considered for operation.

Definition 7 (Formal ϕ-concepts and ϕ-Concept Lattices). Given a re-
flexive, idempotent semiring (K, ϕ), a K-valued formal context (G, M, R)K with
n, p ∈ N, and K-valued vector spaces of rows X ∼= K1×n and columns Y ∼= Kp×1

1. A (formal) ϕ-concept of the formal context (G, M, R)K is a pair (a, b) ∈
X × Y such that −

ϕ a = b and b−ϕ = a . We call a the extent and b the intent
of the concept (a, b), and ϕ its (minimum) degree of existence.

2. If (a1, b1) (a2, b2) are ϕ-concepts of a context, they are ordered by the relation

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ⇐⇒ b1

op

≤ b2, called the hierarchical order.
The set of all concepts ordered in this way is called the ϕ-concept lattice,
Bϕ(G, M, R)K, of the K-valued context (G, M, R)K.
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The nomenclature introduced in definition 7 is supported by the following:

Theorem 3 (Fundamental theorem of K-valued Formal Concept Anal-
ysis, finite version, 1st half). Given a reflexive, idempotent semiring (K, ϕ),
the ϕ-concept lattice Bϕ(G, M, R)K of a K-valued formal context (G, M, R)K
with n, p ∈ N, is a (finite, complete) lattice in which infimum and supremum are
given by:

∧

t∈T

(at, bt) =

⎛

⎝
op⊕

t∈T

at,

−

ϕ

[
op⊕

t∈T

at

]⎞

⎠
∨

t∈T

(at, bt) =

⎛

⎝
[

op⊕

t∈T

bt

]−

ϕ

,

op⊕

t∈T

bt

⎞

⎠ (8)

In [1] the question was posed whether this theorem could be completed in the
direction of §1.1 of [12] . This will be looked into next.

3.2 The Structural Lattice of a K-Concept Lattice

This section contains this paper’s theoretical contributions to the characterisa-
tion of the semimodules over an idempotent, reflexive semifield K that allow to
define the anti-isomorphic lattices of theorem 3.

From definition 4 and theorem 1 the notion of structural semilattice emerges
as important to characterise semimodules over an idempotent semifield. We may
wonder whether more interesting characterisations may be possible when the set
of generators comes from a homomorphism of spaces of finite dimension.

For that purpose, recall that in the Galois connection of equation (7), (·−ϕ ,−ϕ ·) :
Yop � X op , the dually isomorphic closure lattices are:

Yop =
{

ϕ
op

/
(
R

op← x
)

| x ∈ X

}
X op =

{(
y

op→ R
) op

\ ϕ | y ∈ Y

}
(9)

where X is the free space of object sets and Y is the free space of attribute sets.
Now let the singleton sets of objects (row vectors), gi = [ε · · · ei · · · ε] , and
attributes (column vectors), mj = [ε · · · ej · · · ε]T , which are bases of their re-
spective spaces, be mapped through the polars WYop � −

ϕ
({gi}n

i=1) and WX op �
(
{mj}p

j=1

)−
ϕ

, to obtain generator sets for the closure lattices: 〈WYop〉Kop = Yop

〈WX op〉Kop = X op .
But note that the generation process is directed by the algebra of the opposite

semiring Kop , that is, the generation process is carried out using the addition

in the opposite semimodules,
op
⊕= ∧ . As we know that the

op
∨-irreducibles are

included in each set of generators we may test the latter to find the former:

J
(
Yop

)
⊆ 〈WYop〉Kop = Yop J

(
X op

)
⊆ 〈WX op〉Kop (10)

Next recall that the Galois connection of equation (7) is
op
∨-inverting, in other

words, ∧-inverting, therefore, the images of the
op
∨-irreducibles are

op
∧-irreducibles:

M
(
X op

)
=

(
J

(
Yop

))−
ϕ

M
(
Yop

)
= −

ϕ

(
J

(
X op

))
(11)
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Alternatively we may think of the product of each pair of join- and meet-
irreducible sets as being comprised of ∨-irreducible concepts ∧-irreducible con-
cepts with definitions resembling those of the standard theory:

γ̃ϕ (gi) =
((−

ϕ (gi)
)−
ϕ

,−ϕ (gi)
)

μ̃ϕ (mj) =
(
(mj)

−
ϕ ,−ϕ

(
(mj)

−
ϕ

))
(12)

Definition 8 (Structural Lattice). The structural lattice B(G, M, Iϕ
R) of a K-

Concept Lattice Bϕ(G, M, R) is the Concept Lattice of the context, (G, M, Iϕ
R) ,

where

Iϕ
R (i, j) = γ̃ϕ (gi) ≤ μ̃ϕ (mj) (13)

Note that we have not used the siblinghood relation to define the structural
lattice. The coalescing of different join- or meet-irreducibles in the same ray to
obtain a basis is in this case counterproductive because in any section of a parti-
tioned M

(
X op

)
, J

(
X op

)
or their images some join- or meet-irreducibles may

be missing, for instance if structural lattice has the appearance of the N5 lat-
tice. We believe this is one more instance of the differences between idempotent
semimodules and traditional vector spaces.

4 Example: The Analysis of Cross-Lingual Classifier
Adaptation Systems

In this example we analyse a particular problem: the cross-lingual adaptation
of an automatic speech recogniser trained to recognise English phonemes into a
system capable of recognising Mandarin phonemes. Our aim in this task is to
analyse several ways of mapping the English outputs of such classifiers into Man-
darin phonemes by observing whether the mapping has an intuitive, meaningful
structure. We will compare two ways to accomplish this:

– An original system trained with English-speech data with a particular classi-
fier-building technique.

– An enhanced system which uses the previous system as a start point and
improved afterwards by using some Mandarin-speech data to learn to map
the English outputs into Mandarin phonemes.

In both cases, the input to our algorithm will be the confusion matrix (more prop-
erly called the translation matrix, T , in this context) between English phonemes
(outputs, n = 46) and Mandarin phonemes (inputs, p = 71) by observing the
English labels that both networks assign to the Mandarin speech frames and
confronting it with the true Mandarin labels.

4.1 Lattice Construction

This section describes the algorithm employed to obtain the structural lattice of
relation T for a range of degrees of existence ϕ as defined in previous sections.
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For that purpose, we first transform the event counts of the confusion matrix
into a maximum-likelihood estimate of the probability of the true Mandarin label
gi given that the output of the classifier is the English label mj , P (G = gi |
M = mj) . We then take logarithms to transform probabilities in [0, 1] into log-
likelihoods, that is Rmax,+ costs to obtain R ∈ R

n×p

max,+ The following algorithm
then obtains the structural lattice of the cost matrix, R:

Step 1. Compute the closures of the n unitary row vectors of dimension 1 × n,
gi = [ε · · · ei · · · ε] and p unitary column vectors of dimension p×1, mj =
[ε · · · ej · · · ε]T that stand for the characteristic functions of singleton
sets of objects and attributes, respectively. The ϕ-polars of definition 6
allow us to obtain, the ∨- and ∧-irreducible concepts of the structural
lattice using equation (12).

Step 2. Build the standard context associated to those concepts and the struc-
tural lattice by comparing the previous concepts, B(G, M, Iϕ

R) where Iϕ
R

is the incidence with {0, 1} entries in formula (13.)
Step 3. Once the standard context adequate for the structural lattice is ob-

tained for each particular ϕ we used ConExp [13] to obtain the standard
lattices.

Because the Galois connection that obtains the formal concepts depends on
the pivot, ϕ, typically the above algorithm must be carried out a number of
times, one for each choice of ϕ that is deemed interesting.

4.2 Lattice Exploration

The Influence of the Enhancement stage: Choosing ϕ. Our aim now
is to explore the behaviour of the K-Concept Lattice for a particular K-formal
context with varying ϕ . For this purpose, we have found the standard context
of the structural lattice with the algorithm above for each ϕ and worked out the
number of concepts resulting for the standard Formal Contexts of the original
and enhanced systems. Figure 2 shows this evolution where we have chosen to
sample the curve more frequently as we approach the right end (i.e. ϕ = 0)
by using the tangent function of a uniform sampling. A logarithmic scale has
been used in the vertical axis to improve the comparison of the two curves given
the notorious differences in the number of concepts of the two examples we are
evaluating here.

For a perfect translation between two phonemic systems of identical cardi-
nality, the best system would show a diagonal matrix in the K-Formal Context,
equivalent to a diamond lattice of as many ∨- and ∧-irreducibles as phonemes.
We expect to find systems that do a worse translation further and further from
this structure and with increasing concept counts. Indeed, the most significant
observation we can gather from the plot above is the reduction in the number
of concepts achieved by the enhanced system. We can infer, therefore, that the
enhancing stage improves the translation in such direction.

We notice that the overall shapes of the curves are very similar. For smaller
ϕ the number of concepts remains constant for each matrix being evaluated.
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Fig. 2. Number of concepts vs. ϕ

For ϕ ≥ maxi,j Rij , the incidence matrix is everywhere null IR = 0 leading to
a two-concept lattice for both curves. In between these ranges we see how the
enhanced system shows less and less concepts while the original system’s number
of concepts reaches a really high peak (around 105) and then quickly diminishes.

Reading Structural Lattices. We now try to understand what kind of infor-
mation can be gleaned from structural lattices. We begin by observing the most
salient properties of the systems, that is, those lattices obtained with the higher
values of the pivot. Afterwards we try to bring more detail into the picture by
decreasing the value of the pivot so as to vary the number of concepts from
right to left as suggested by figure 2. We thus obtain a sequence of structural
lattices starting from the least complex (and the least number of concepts) and
gradually increasing the complexity as new concepts appear.

Fig. 3. Structural lattice of the enhanced system with a ϕ = −0.40 and 5 concepts
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Fig. 4. Structural lattice of the enhanced system with a ϕ = −0.99 and 18 concepts

The first thing we can notice in both the sequence from the original and the
enhanced system is the appearance of the silence attribute concept (tagged ’-’ in
the figures). This is a well-known peculiarity of systems such as those we explore
in this example and it is therefore a good sign that our analysis is progressing
correctly.

Figure 3 shows a more advanced stage of analysis for a pivot ϕ = −0.40. In it
some groups of Mandarin objects are assigned just to three English attribute con-
cepts. Both silence and r are attributed to several different Mandarin phonemes
which can be interpreted as an error of the system. However, uw is always at-
tributed to Mandarin vowel sounds which, at this level of detail, seems to be a
good choice.

As we continue our analysis we can find lattices such as those in figures 4
and 5. We have omitted here the object names that clutter the picture but the
radius of the nodes is proportional to the number of objects pertaining just to
them. Here, in contrast with figure 3 where most of the objects were assigned
the top concept, they are all distributed into the non-extremal nodes. We can
also observe that these objects are grouped (most of the times) meaningfully
from the point of view of their acoustic properties.

Although we show no picture here due to the large number of concepts, it is
interesting to consider the lattice corresponding to the leftmost constant portion
of figure 2. Despite the difficulty of drawing any conclusion from such a big lattice
the most salient characteristic is that some English phonemes remain attached
to the bottom concept which could be interpreted as the systems being unable to
assign those English phonemes to any of the Mandarin, either due to limitations
of the system or to some intrinsic characteristics of these phoneme sets.
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Fig. 5. Structural lattice of the enhanced system with a ϕ = −1.09 and 20 concepts

5 Conclusion

We have presented an attempt at the solution of two problems of K-Formal
Concept Analysis of different ilk: first, the lack of an analogue for the second
half of the basic theorem of Formal Concept Analysis, and second, the lack of a
building procedure for the K-Concept Lattice.

For the first purpose we have introduced the concept of the structural lattice
of the K-Concept Lattice based in the similar structural semilattice, as featured
in idempotent algebra. Thus we expect the structural lattice to provide the
“scaffolding” for the bigger K-concept lattice. As to the relation of the structural
lattice to the lattice described in the second half of the Basic Theorem of Formal
Concept Analysis, we recall that (for n, p ∈ N) Formal Concept Analysis may
be taken to be the particular case of K-Formal Concept Analysis when the
idempotent reflexive semiring is the Boolean semiring, and the pivot is ⊥Bop = 1,
B(G, M, I) = B1(G, M, I)B . It is easy to see that in that case the definition
of the structural lattice and the lattice of the second part of Theorem 3 of [12]
coincide.

Secondly, we have provided an algorithm to build the structural lattice by
reducing its calculations to those of a standard Concept Lattice, and have used
such construction to analyse the behaviour of the confusion matrices of multiple
input-multiple output classifiers. We have also discussed the role of the pivot
ϕ introduced in [1] to modulate the Galois connection between the spaces of
(multi-valued) sets of objects and attributes in such a setting and we have tried
to argue how the performance of the classifier relates to its K-Concept Lattice
conforming to a particular, expected shape.
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Abstract. Several fuzzifications of formal concept analysis have been
proposed to deal with uncertainty or incomplete information. In this
paper, we focus on the new paradigm of multi-adjoint concept lattices
which embeds different fuzzy extensions of concept lattices, our main re-
sult being the representation theorem of this paradigm. As a consequence
of this theorem, the representation theorems of the other paradigms can
be proved more directly. Moreover, the multi-adjoint paradigm enriches
the language providing greater flexibility to the user.

Keywords: concept lattices, multi-adjoint lattices, Galois connection,
implication triples.

1 Introduction

The study of reasoning methods under uncertainty, imprecise data or incomplete
information has shown to be an important topic in the recent years. Most of the
current research areas are receiving this message and it is frequent to see fuzzified
versions of several well-known standard structures. In this paper, we focus on
the area of formal concept analysis and, specifically, on the generalization of the
classical definition of concept lattice to the fuzzy case.

A number of different approaches have been proposed to generalize the clas-
sical concept lattices given by Ganter and Wille [10] allowing some uncertainty
in data, a recent survey and comparison of approaches to fuzzy concept lattices
is presented in [6].

One of these approaches was proposed by Burusco and Fuentes-González [7]
where fuzzy concept lattices were first presented, and later further developed by
Pollandt [23] and Bělohlávek [2] who use complete residuated lattices as struc-
tures for the truth degrees. For the latter approach, the main theorem was proved
in two ways: firstly, by reduction to the crisp version of main theorem (this was
proved independently in [23] and, more generally, via representation of fuzzy Ga-
lois connections in [4]); secondly, working directly in a fuzzy setting in [3].

Bělohlávek, in [5], later extended this to the case when a fuzzy partial order
is considered on a fuzzy concept lattice instead of on an ordinary partial order.
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Georgescu and Popescu extended this framework to non-commutative logic and
similarity in a series of papers [11, 12, 13, 14]; in a different direction, it was
also extended in an asymmetric way, although only for the case of classical
equality (L = {0, 1}), by Krajči, which introduced the so-called generalized
concept lattices in [17, 18].

In the context of general logical frameworks, a recent approach so-called multi-
adjoint has been recently introduced and is receiving considerable attention [16,
21]. The multi-adjoint framework was originated as a generalization of several
non-classical logic programming frameworks, its semantic structure is the multi-
adjoint lattice, in which a lattice is considered together with several conjunctors
and implications making up adjoint pairs [20].

In [22], with the idea of providing a general framework in which the dif-
ferent approaches stated above could be conveniently accommodated, the au-
thors considered a general non-commutative environment; this naturally leads
to the consideration of adjoint triples, also called pre-implication triples [1] or
bi-residuated structures [19] as the main building blocks of our multi-adjoint
concept lattices.

The aim of the paper is to construct so-called multi-adjoint concept lattices in
order to generalise different fuzzy extensions of concept lattices. The main result
is a representation theorem which characterises those complete lattices which
are isomorphic to multi-adjoint concept lattices. The notion of a multi-adjoint
concept lattice is demonstrated by a detailed example.

The plan of this paper is the following: in Section 2 we recall the basics about
Galois connection and the notion of multi-adjoint concept lattice is introduced,
in Section 3 contains the proof of the representation theorem; in Section 4 an
example of the multi-adjoint framework is presented; the paper ends with some
conclusions and prospects for future work.

2 Multi-adjoint Concept Lattice

A basic notion in formal concept analysis is that of Galois connection, we start
this section recalling a result which proves that each Galois connection has an
associated complete lattice, called Galois lattice or concept lattice.

Definition 1. Let (P1, ≤1) and (P2, ≤2) be posets, and let ↓ : P1 → P2 and
↑ : P2 → P1 be mappings, the pair (↑, ↓) forms a Galois connection between P1

and P2 if:

1. ↑ and ↓ are order-reversing.
2. x ≤1 x↓↑ for all x ∈ P1.
3. y ≤2 y↑↓ for all y ∈ P2.

If P1 and P2 are complete lattices then the following theorem can be established,
see [9], which will be used in order to prove that our construction of multi-adjoint
concept lattices actually leads to a complete lattice.
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Theorem 1. Let (L1, �1), (L2, �2) be complete lattices, (↑, ↓) a Galois connec-
tion between L1, L2 and C = {〈x, y〉 | x↑ = y, x = y↓; x ∈ L1, y ∈ L2} then C is a
complete lattice, where

∧

i∈I

〈xi, yi〉 = 〈
∧

i∈I

xi, (
∨

i∈I

yi)↓↑〉 and
∨

i∈I

〈xi, yi〉 = 〈(
∨

i∈I

xi)↑↓,
∧

i∈I

yi〉

Firstly, a generalization of multi-adjoint lattices will be introduced in order to
admit different sorts, in which we allow non-commutative conjunctors as in [1,
11, 19]. To begin with, the adjoint pairs are generalized into adjoint triples, the
basic blocks of multi-adjoint concept lattices, as follows:

Definition 2. Let (P1, ≤1), (P2, ≤2), (P3, ≤3) be posets and &: P1 ×P2 −→ P3,
↙ : P3×P2 −→ P1, ↖ : P3×P1 −→ P2 be mappings, then (&, ↙, ↖), is a adjoint
triple with respect to P1, P2, P3 if:

– & is order-preserving in both arguments.
– ↙ and ↖ are order-preserving in the first argument and order-reversing in

the second.
– x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1, y ∈ P2

and z ∈ P3.

This last property is known as adjoint property and can be seen as a generalisa-
tion of the modus ponens rule in a non-commutative multi-valued setting, see [15]
for the case of adjoint pairs. Notice that no boundary condition is required,
in difference to the usual definition of multi-adjoint lattice [21] or implication
triples [1].

In order to introduce a Galois connection which generalizes that given in the
classical case, the usual motivation underlying the multi-adjoint framework [16,
21] is applied to that of adjoint triples, and leads to the following definition of
multi-adjoint frame.

Definition 3. A multi-adjoint frame L is a tuple

(L1, L2, P, �1, �2, ≤, &1, ↙1, ↖1, . . . , &n, ↙n, ↖n)

where (L1, �1) and (L2, �2) are complete lattices, (P, ≤) is a poset and, for
all i = 1, . . . , n the tuple (&i, ↙i, ↖i) is an adjoint triple with respect to L1, L2, P .

A multi-adjoint frame as above will be denoted as (L1, L2, P, &1, . . . , &n), for
short. It is convenient to note that, in principle, L1, L2 and P could be simply
posets, the reason to consider complete lattices is that multi-adjoint frames will
be used as the underlying lattice on which the operations will be made; hence,
general joins and meets are required.

A context for a given frame will mean a tuple (A, B, R, σ) defined as below
where, following the usual terminology, A is to be considered as a set of attributes
and B as a set of objects.
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Definition 4. A context for a given frame (L1, L2, P, &1, . . . , &n) is a tuple
(A, B, R, σ) such that A and B are non-empty sets, R is a P -fuzzy relation
R : A×B −→ P and σ is a mapping which associates any object in B (or attribute
in A) with some particular adjoint triple in the frame, that is, σ : B → {1, . . . , n}
(or σ : A → {1, . . . , n}).
The fact that in a multi-adjoint context each object (or attribute) has an as-
sociated implication is interesting in that subgroups with different degrees of
preference can be established in a convenient way. From now on, we will con-
sider in the context the association σ : B → {1, . . . , n}.

Now, given a frame and a context for that frame, the following mappings
↑σ : LB

2 −→ LA
1 and ↓σ

: LA
1 −→ LB

2 can be defined:

g↑σ(a) = inf{R(a, b) ↙σ(b) g(b) | b ∈ B}
f↓σ

(b) = inf{R(a, b) ↖σ(b) f(a) | a ∈ A}

Notice that these mappings generalise those given in [5,18] and, as proved below,
generate a Galois connection.

Proposition 1. Given a multi-adjoint frame (L1, L2, P, &1, . . . , &n) and a con-
text (A, B, R, σ), the pair (↑σ , ↓

σ

) is a Galois connection between LA
1 and LB

2 .

Proof. From now on, to improve readability, we will write (↑, ↓) instead of (↑σ , ↓
σ

)
and ↙b, ↖b instead of ↙σ(b), ↖σ(b).

By definition, we have to prove that:

1. ↑ and ↓ are order-reversing.
This is trivial since the implications are order-reversing in the second argu-
ment.

2. g ≤ g↑↓ for all g ∈ LB
2 .

Given a ∈ A and b ∈ B the following chain of inequalities holds because of
the definition of g↑(a) as an infimum and the adjoint property:

g↑(a) �1 R(a, b) ↙b g(b) ⇐⇒ g↑(a)&b g(b) ≤ R(a, b)
⇐⇒ g(b) �1 R(a, b) ↖b g↑(a)

As the inequality above holds for all a ∈ A, by using properties of the
infimum, it can be obtained that

g(b) �2 inf{R(a, b) ↖b g↑(a) | a ∈ A} = g↑↓(b)

3. f ≤ f↓↑ for all f ∈ LA
1 .

The proof is similar. �
Now, a concept is a pair 〈g, f〉 satisfying that g ∈ LB

2 , f ∈ LA
1 and that g↑ = f

and f↓ = g; with (↑, ↓) being the Galois connection defined above.

Definition 5. The multi-adjoint concept lattice associated to a multi-adjoint
frame (L1, L2, P, &1, . . . , &n) and a context (A, B, R, σ) is the set of concepts:

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f↓ = g}

with the ordering 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equivalently f2 �1 f1).
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Note that, by Theorem 1, the poset (M, �) defined above is a complete lattice,
since the arrows (↑, ↓) form a Galois connection between the complete lattices
LA

1 and LB
2 .1

3 The Representation Theorem

An extension of the representation (or fundamental) theorem on the classical
concept lattice [10] for the multi-adjoint framework is presented below. The
proof follows the lines of those given for previous extensions of the classical
concept lattices, but the presentation has been simplified. To begin with, we
need to introduce some definitions and preliminary results.

Definition 6. Given a set A, a poset P with bottom element ⊥, and elements
a ∈ A, x ∈ P , the characteristic mapping @x

a : A → P is defined as:

@x
a(a′) =

{
x, if a′ = a
⊥, otherwise

The following lemma gives a technical property which will be needed later.

Lemma 1. In the concept lattice (M, �), given a ∈ A, b ∈ B, x ∈ L1 and
y ∈ L2, the following equalities hold:

@x
a
↓(b′) = R(a, b′) ↖b′ x for all b′ ∈ B

@y
b
↑(a′) = R(a′, b) ↙b y for all a′ ∈ A

Proof. By definition of @x
a
↓:

@x
a
↓(b′) = inf{R(a′, b′) ↖b′ @x

a(a′) | a′ ∈ A} = R(a, b′) ↖b′ x

where the last inequality follows because R(a′, b) ↖b ⊥1 = �2 (this fact is a
consequence of the adjoint property, since ⊥1 �1 R(a′, b) ↙b �2).

The other equality follows similarly. �

The following definitions introduce properties which will be used in the statement
of Proposition 2.

Definition 7. Given a complete lattice L, a subset K ⊆ L is infimum-dense
(resp. supremum-dense) if and only if for all x ∈ L there exists K ′ ⊆ K such
that x = inf(K ′) (resp. x = sup(K ′)).

Definition 8. Let (M, �) be a multi-adjoint concept lattice, (V, �) a complete
lattice and α : A × L1 → V , β : B × L2 → V two maps. We say that β is
(V, R)-related with α if we have that:

1a) α[A × L1] is infimum-dense;

1 In the rest of the paper we will assume a fixed multi-adjoint frame and context.
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1b) β[B × L2] is supremum-dense; and
2) for each a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2:

β(b, y) � α(a, x) if and only if x&b y ≤ R(a, b)

Proposition 2. Given a multi-adjoint concept lattice (M, �), a complete lattice
(V, �) and two maps f ∈ LA

1 , g ∈ LB
2 , if there exist two mappings β : B×L2 → V ,

α : A × L1 → V , where β is (V, R)-related with α we have that:

1. β is order-preserving in the second argument.
2. α is order-reversing in the second argument.
3. g↑(a) = sup{x ∈ L1 | vg � α(a, x)}, where vg = sup{β(b, g(b)) | b ∈ B}.
4. f↓(b) = sup{y ∈ L2 | β(b, y) � vf}, where vf = inf{α(a, f(a)) | a ∈ A}.
5. If gv(b) = sup{y ∈ L2 | β(b, y) � v}, then sup{β(b, gv(b)) | b ∈ B} = v.
6. If fv(a) = sup{x ∈ L1 | v � α(a, x)}, then sup{α(a, fv(a)) | a ∈ A} = v.

Proof. We give the proofs for items 1, 3 and 5, since the others are similar.
1. Let y1 �2 y2 ∈ L2, as β(b, y2) ∈ V and α[A × L1] is infimum-dense there
exists a set of indices Λ and K = {(aj , xj) | j ∈ Λ} ⊆ A × L1 such that
β(b, y2) = inf{α(aj , xj) | j ∈ Λ}, so β(b, y2) � α(aj , xj) for all j ∈ Λ. Now, by
Def. 8 property 2, it follows that xj &b y2 ≤ R(aj , b) for all j and, as y1 �2 y2,

xj &b y1 ≤ xj &b y2 ≤ R(aj , b) for all j

Therefore, β(b, y1) � α(aj , xj) for all j and, as β(b, y2) is the infimum, β(b, y1) �
β(b, y2), so β is order-preserving in the second argument.
3. Given x ∈ L1, by the adjoint property the inequality x �1 R(a, b) ↙b g(b) is
equivalent to x&b g(b) ≤ R(a, b) which is also equivalent, by Def. 8 property 2,
to β(b, g(b)) � α(a, x) for all b ∈ B, therefore by properties of the supremum

vg = sup{β(b, g(b)) | b ∈ B} � α(a, x)

Thus, we obtain the equality of the sets:

{x ∈ L1 | x �1 R(a, b) ↙b g(b) for all b ∈ B} = {x ∈ L1 | vg � α(a, x)}

Therefore:

g↑(a) = inf{R(a, b) ↙b g(b) | b ∈ B}
(∗)
= sup{x ∈ L1 | x �1 R(a, b) ↙b g(b) for all b ∈ B}
= sup{x ∈ L1 | vg � α(a, x)}

where (∗) is given from the adjoint property.
5. Firstly we will show that, for any v ∈ V , sup{β(b, gv(b)) | b ∈ B} � v, and let
us write Yb = {y ∈ L2 | β(b, y) � v} for any b ∈ B, so that gv(b) = sup Yb.

Given v ∈ V , as α[A × L1] is infimum-dense, there is a set of indices Λ and
K = {(aj , xj) | j ∈ Λ} ⊆ A × L1 such that v = inf{α(aj , xj) | j ∈ Λ}.
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If Yb = ∅, then gv(b) = ⊥2 and we have the next chain of equivalences:

gv(b) �2 R(aj , b) ↖b xj iff xj &b gv(b) ≤ R(aj, b) iff β(b, gv(b)) � α(aj , xj) (1)

Otherwise, if Yb is non-empty, then, by Def. 8 property 2, we have for all j ∈ Λ
and y ∈ Yb:

β(b, y) � v � α(aj , xj) iff xj &b y ≤ R(aj, b) iff y �2 R(aj, b) ↖b xj

by computing the supremum on y, we get to gv(b) = sup Yb �2 R(aj, b) ↖b xj ,
and then the rest of equivalences in (1) apply.

Recalling that v = inf{α(aj , xj) | j ∈ Λ} we obtain than β(b, gv(b)) � v for
all b ∈ B. Finally, taking supremum on the left hand side, we get

sup{β(b, gv(b)) | b ∈ B} � v

For the other inequality, as β[B × L2] is supremum-dense we have that v =
sup{β(bj , yj) | (bj , yj) ∈ A × L2, j ∈ Λ′}. Then, for any j ∈ Λ′ we have that
yj ∈ Ybj and, moreover, yj �2 sup Ybj = gv(bj). Since β is order-preserving in
the second argument, by item 1, we obtain:

β(bj , yj) � β(bj , gv(bj)) � sup{β(bj, gv(bj)) | j ∈ Λ} � sup{β(b, gv(b)) | b ∈ B}

As v is the supremum on j of β(bj , yj), we get v � sup{β(b, gv(b)) | b ∈ B}. �

We can now state and prove the representation theorem for multi-adjoint concept
lattices.

Theorem 2 (Representation theorem). Given a complete lattice (V, �) and
a multi-adjoint concept lattice (M, �), we have that V is isomorphic to M if
and only if there exist mappings α : A × L1 → V , β : B × L2 → V such that β is
(V, R)-related to α.

Proof. Given an isomorphism ϕ : M → V , the mappings α : A × L1 → V and
β : B × L2 → V can be naturally defined, for every a ∈ A, b ∈ B, x ∈ L1 and
y ∈ L2, as follows:

α(a, x) = ϕ(〈@x
a
↓, @x

a
↓↑〉) β(b, y) = ϕ(〈@y

b
↑↓

, @y
b
↑〉)

Let us prove that β is (V, R)-related to α:
Firstly, let us show that α[A × L1] is infimum-dense. By definition, we have

to prove that given v ∈ V there exists K ⊆ A × L1 such that v = inf(α[K]).
If ϕ−1(v) = 〈g, f〉 ∈ M, we define K = {(a, f(a)) | a ∈ A} ⊆ A × L1. Since ϕ

is an isomorphism, it is sufficient to prove that

〈g, f〉 = inf{〈@f(a)
a

↓
, @f(a)

a

↓↑〉 | a ∈ A}

Let us prove, for instance, that g(b) = inf{@f(a)
a

↓
(b) | a ∈ A}. By Lemma 1, we

have that @f(a)
a

↓
(b) = R(a, b) ↖b f(a), thus

inf{@f(a)
a

↓
(b) | a ∈ A} = inf{R(a, b) ↖b f(a) | a ∈ A} = f↓(b) = g(b)
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Similarly, we can prove that β[B × L2] is supremum-dense.
It only remains to prove that given a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2, we have

that β(b, y) � α(a, x) iff x&b y ≤ R(a, b).
For the direct implication, as ϕ is an order-isomorphism, we have that β(b, y) �

α(a, x) is equivalent to 〈@y
b
↑↓

, @y
b
↑〉 ≤ 〈@x

a
↓, @x

a
↓↑〉 and, in particular, to @y

b
↑↓ ≤

@x
a
↓. From the properties of Galois connection, Lemma 1, and the adjoint property

we obtain the following chain:

y = @y
b (b) �2 @y

b
↑↓(b) �2 @x

a
↓(b) = R(a, b) ↖b x iff x&b y ≤ R(a, b)

For the other implication, it is sufficient to prove that @x
a ≤ @y

b
↑ as this is equiv-

alent to @y
b
↑↓ ≤ @x

a
↓ which finally implies β(b, y) � α(a, x), from the definition

of α and β, and ϕ order-preserving.
But this is clear because, if a′ ∈ A with a′ �= a, then @x

a(a′) �1 @y
b
↑(a′) holds

because @x
a(a′) = ⊥1. If a′ = a, as x&b y ≤ R(a, b) applying the adjoint property

and Lemma 1 we obtain that:

@x
a(a) = x �1 R(a, b) ↙b y = @y

b
↑(a)

Now, conversely, assume we have mappings α : A × L1 → V , β : B × L2 → V
where β is (V, R)-related to α, and let us construct an isomorphism ϕ : M → V .
We define the mapping ϕ for every 〈g, f〉 ∈ M as follows:

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B}

To prove that it is a lattice isomorphism we will construct the inverse mapping
ψ : V → M of ϕ.

The mapping ψ is defined for each v ∈ V as ψ(v) = 〈gv, fv〉, where, for
each b ∈ B and a ∈ A, gv(b) and fv(a) are defined as in Proposition 2. This
proposition shows that ψ is well-defined as well, that is, 〈gv, fv〉 is a concept.
The argument is as follows:

gv
↑(a) = sup{x ∈ L1 | vgv � α(a, x)} = sup{x ∈ L1 | v � α(a, x)} = fv

where the first equality is obtained from item 3 and, from item 5 we have the
other equality because vgv = sup{β(b, gv(b)) | b ∈ B} = v. The equality f↓

v = gv

is proved analogously.
To prove the equality ψ(ϕ(〈g, f〉)) = 〈g, f〉, it is sufficient to prove that f =

fvϕ , where vϕ = ϕ(〈g, f〉), but this follows from Proposition 2 (item 3) since
vg = sup{β(b, g(b)) | b ∈ B} = ϕ(〈g, f〉) = vϕ and

g↑(a) = sup{x ∈ L1 | vg � α(a, x)}

The other composition gives the identity as well, that is, v = ϕ(ψ(v)) =
ϕ(〈gv, fv〉) = sup{β(b, gv(b)) | b ∈ B} for all v ∈ V , as a mapping of item 5 of
Proposition 2.

To finish the proof it is sufficient to prove that ϕ it is order-preserving and
order-reflecting, see [9]. Given 〈g1, f1〉, 〈g2, f2〉 in M with 〈g1, f1〉 ≤ 〈g2, f2〉, we
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have that g1 ≤ g2 and therefore β(b, g1(b)) � β(b, g2(b)) for all b ∈ B, since β
is order-preserving in the second argument. Thus, by definition of ϕ, we obtain
that:

ϕ(〈g1, f1〉) � ϕ(〈g2, f2〉)

To prove that it is order-reflecting it is sufficient to check that the inverse map-
ping is order-preserving, but this is straightforward. �

Regarding an improvement of a previous representation theorem: let us notice
that, in Proposition 2 it is proved directly that the function α is order-reversing
and β is order-preserving in their second argument, hence these hypotheses,
which are explicitly required for the representation theorem of [17], can be
dropped.

Let us finish this section with a further proposition which relates the behaviour
of the mappings α and β.

Proposition 3. Given a multi-adjoint concept lattice (M, �), a concept 〈g, f〉 ∈
M and two mappings β : B × L2 → M, α : A × L1 → M, where β is (M, R)-
related to α, we have that:

sup{β(b, g(b)) | b ∈ B} = inf{α(a, f(a)) | a ∈ A}

Proof. Given a ∈ A, we have that

f(a) = g↑(a) = inf{R(a, b) ↙b g(b) | b ∈ B}

then f(a) �1 R(a, b) ↙b g(b) for all b ∈ B and applying the adjoint property
and Property 2 we have that β(b, g(b)) � α(a, f(a)) for all b ∈ B. Therefore if
we apply the supremum and infimum properties we obtain the inequality:

sup{β(b, g(b)) | b ∈ B} � inf{α(a, f(a)) | a ∈ A}

Let vβ = sup{β(b, g(b)) | b ∈ B} ∈ V be, as α[A × L1] is infimum-dense there
exists a set of indices Λ and K = {(aj , xj) | j ∈ Λ} ⊆ A × L1 such that
vβ = inf{α(aj , xj) | j ∈ Λ} and, for all j ∈ Λ and b ∈ B, we have that
β(b, g(b)) � α(aj , xj) which leads us, from Property 2, to xj �1 R(aj , b) ↙b g(b)
and, using that f = g↑, to xj �1 f(aj) for all j ∈ Λ. Hence we have the following
chain which provides the required equality:

vβ = sup{β(b, g(b)) | b ∈ B} � inf{α(a, f(a)) | a ∈ A}
� inf{α(aj , f(aj)) | j ∈ Λ}
(∗)
� inf{α(aj , xj) | j ∈ Λ}
= vβ

where (∗) holds because xj �1 f(aj) for all j ∈ Λ and α is order-reversing in the
second argument. �
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4 A Detailed Example

Now, we apply the language capabilities of the multi-adjoint concept lattices in
an example introduced by Umbreit (later Pollandt, after her marriage) [24] and
used in [8]. Furthermore, in the multi-adjoint concept lattice framework the user
can express in a better way his necessities.

Example 1. Let ([0, 1], [0, 1], [0, 1], ≤, ≤, ≤, &G, &L) be the multi-adjoint frame
where &G and &L are the commutative Gödel and �Lukasiewicz conjunctors
respectively, so the residuated implications are defined as:

b ↖L a = b ↙L a = min{1, 1 + b − a}

b ↖G a = b ↙G a =
{

1, if b ≥ a;
b, otherwise.

The different contexts considered later have the same set of objects and at-
tributes:

A = {warm, cold, poor in rain, calm wind}
B = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

and the same relation R : A × B → P , defined in Table 1.

Table 1. Data for Example 1

R Mon Tue Wed Thu Fri Sat Sun

warm 0.5 1 0.5 0.5 0 0 0
cold 0.5 0 0.5 0.5 1 1 1

poor in rain 1 1 0 1 0 0.5 1
calm wind 1 1 0 0 0 0 1

Now, if we consider the contexts (A, B, R, σ1), (A, B, R, σ2), where σ1(b) = &G

and σ2(b) = &L for every b ∈ B we can check that we obtain the same result
as [8]. We can see this in the concrete example of the problem of walking time,
that is defined in [24] as a day of the week not much warm or cold and with
no rain, so the fuzzy notion can be expressed by the fuzzy subset f : A → [0, 1]
defined as:

f(warm) = 0.5, f(cold) = 0.5, f(poor in rain) = 1, f(calm wind) = 0.5

and represented as: f = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}.
Let us compute a multi-adjoint concept which represents the situation given
by f .

With the first context we have that

f↓(Mon) = inf{R(a, Mon) ↖G f(a) : a ∈ A}
= inf{0.5 ↖G 0.5, 0.5 ↖G 0.5, 1 ↖G 1, 1 ↖G 0.5}
= 1
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If we make the same computation for the other days the value 0 is obtained.
In a similar way f↓↑ is calculated:

f↓↑(warm) =
= inf{R(warm, b) ↙G f↓(b) : b ∈ B}
= inf{0.5 ↙G 1, 1 ↙G 0, 0.5 ↙G 0, 0.5 ↙G 0, 0 ↙G 0, 0 ↙G 0, 0 ↙G 0}
= 0.5

If the same is done for the other attributes we have that f↓↑(cold) = 0.5 and
that f↓↑(poor in rain) = f↓↑(calm wind) = 1. So, the best days for walking time
(with definition given above) is Monday while the others are bad days.

If we use the second context we obtain the concept formed by the two com-
ponents below:

f↓ = {Mon/1, Tue/0.5, Wed/0, Thu/0.5, Fri/0, Sat/0.5, Sun/0.5}
f↓↑ = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}

In this case the best day is also Monday, but Tuesday, Thursday, Saturday and
Sunday are good ones, while Wednesday and Friday are bad ones. Hence, as
stated above, the concepts obtained 〈f↓, f↓↑〉 are the same as in [8].

However, we can consider a multi-adjoint context where we can adapt the
definition of walking time in order to consider some restriction in the objects
(or attributes). If we think of a modified problem of walking time in which
the preferences are modified to add “better at weekends”, we can consider the
context (A, B, R, σ3), where σ3(b) = &G for every b ∈ B1 and σ3(b) = &L for
every b ∈ B2, where B1 = {Mon, Tue, Wed, Thu, Fri} and B2 = {Sat, Sun}, this
way we make the computation differently on weekends by using the following
definition by cases:

f↓(b1) = inf{R(a, b1) ↖G f(a) : a ∈ A} for b1 ∈ B1

f↓(b2) = inf{R(a, b2) ↖L f(a) : a ∈ A} for b2 ∈ B2

and obtain f↓ = {Mon/1, Tue/0, Wed/0, Thu/0, Fri/0, Sat/0.5, Sun/0.5}. Simi-
larly, the computation of f↓↑ takes into account the relationship between objects
and implications:

f↓↑(warm) =
= inf({R(warm, b1) ↙G f↓(b1) : b1 ∈ B1} ∪ {R(warm, b2) ↙L f↓(b2) : b2 ∈ B2}
= 0.5

If we make the same computation for the other attributes we obtain:

f↓↑ = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}

Now, though the user prefers weekends, Monday is still the best day, but now,
Saturday and Sunday are better days than the others. Remind that fuzzy notions
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related to the attributes can be given, for example weather in weekends can be
studied, represented by the fuzzy set:

g = {Mon/0, Tue/0, Wed/0, Thu/0, Fri/0, Sat/1, Sun/1}

and fixed the attention in the attributes ‘warm’ and ‘poor in rain’, considering
different implications, that is, the context could be (A, B, R, τ) where τ is defined
as:

τ(warm) = τ(poor in rain) = &L ; τ(cold) = τ(calm wind) = &G

5 Conclusions and Future Work

Multi-adjoint concept lattices have been introduced as a generalization of differ-
ent existing approaches to fuzzified and/or generalized versions of the classical
concept lattice. One of the interesting features is that in a multi-adjoint context
each object (or attribute) has an associated implication and, thus, subgroups
with different degrees of preference can be easily established.

The representation theorem for multi-adjoint concept lattices has been shown
by taking advantage of the relationship between Galois connections and concept
lattices given in [9]. This fact, in particular, shows that the “concepts” defined
in [17] form a complete lattice without having to rely on the particular definitions
of the Galois connections.

The multi-adjoint concept lattice embeds the generalized concept lattice [18]
and, as a consequence, other different fuzzy extensions of the classical concept
lattice [10], such as the fuzzy concepts of [7] and of [5] for the case of {0, 1}-
equality and crisp ordering.

Continuing with the comparison of the multi-adjoint frame with other fuzzy
approaches, one future work would be to study the relationship between the
concepts given in [11]. Another point to take into account is the consideration
of fuzzy ordering in order to completely embed the fuzzy concept lattice of [5].
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with continuous semantics. In Logic Programming and Non-Monotonic Reasoning,
LPNMR’01, pages 351–364. Lect. Notes in Artificial Intelligence 2173, 2001.

21. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
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Abstract. We study the “non-unit implications” of a formal context
and investigate the closure system induced by these implications. It turns
out that this closure system is the largest closure system on the same base
set containing the given one as a complete sublattice. This was studied
by other authors with special emphasis on semidistributivity and convex
geometries. We present some of their results in FCA language.

The complete lattice refinements of a closure system form an interval
within the lattice of all closure systems. We describe the reduced context
for this interval.

For better compatibility with the literature, we dualize and consider
implications between objects, not attributes.

1 Complete Lattice Refinements of Closure Systems

We study closure systems on a set G. For simplicity, and w.l.o.g., we assume each
such closure system to be given as the system Ext(K) of extents of some formal
context K := (G, M, I). The corresponding closure operator will be written as
X �→ XII , or simply as X �→ X ′′.

A refinement of a closure system is another closure system on the same base
set, containing the first as a subset. Such refinements can be obtained as the
systems of extents of appositions K | L, where L is an arbitrary formal con-
text with object set G, cf. [GW99, Definition 30]. The lattice (Ext(K), ⊆) is
always a

∧
-subsemilattice of (Ext(K | L), ⊆), but usually not a sublattice, be-

cause joins may not be preserved. In the exceptional case that (Ext(K), ⊆)
is a (complete) sublattice of (Ext(K | L), ⊆), we speak of a (complete) lattice
refinement.

In the finite case, the two notions (of lattice refinement and complete lattice
refinement) conincide iff ∅ is closed. Lattice refinements of finite closure systems
have been studied by Adaricheva and Nation [AN03], [N04].

Lemma 1. Let K := (G, M, I) and L := (G, N, J). Then Ext(K | L) is a com-
plete lattice refinement of Ext(K) if and only if for each n ∈ N the set

Θ(n) := {g ∈ G | gII ⊆ nJ}

is an extent of K.
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Proof. Clearly Θ(n)II is an extent of K. More precisely, it is the supremum of all
gII ⊆ nJ in Ext(K). In Ext(K | L), nJ is an upper bound of {g ∈ G | gII ⊆ nJ},
and in order to preserve joins it is necessary that Θ(n)II ⊆ nJ . Then we have
Θ(n)II = Θ(n).

Now consider an arbitrary family F ⊆ Ext(K) and let U :=
⋃

F . Then U II

is the join of F in Ext(K), and the join in Ext(K | L) is different iff there exists
some attribute n ∈ N such that nJ contains U but not U II . Since U is a union
of extents, we have that

g ∈ U ⇒ gII ⊆ U,

and thus U ⊆ Θ(n) ⊆ nJ . If this is an extent of K, it is an upper bound of F
and thus contains U II , a contradiction. �	

It is quite evident (and follows from Theorem 1) that the intersection of com-
plete lattice refinements of Ext(K) again yields a complete lattice refinement.
The lattice refinements of Ext(K), ordered by inclusion, therefore form a com-
plete lattice. (However, lattice refinements of Ext(K) need not be lattice refine-
ments of each other, see Example 1). We shall discuss some properties of this
lattice in Section 2.

Let us call a closure system on G elementary, if each singleton set {g} is closed
(g ∈ G). If |G| > 1, then a closure system on G can only be elementary if the
empty set ∅ is closed. The following proposition states that a closure system has
a proper complete lattice refinement, i.e. Ext(K) � Ext(K | L), iff Ext(K) is not
elementary.

Proposition 1. Each closure system containing ∅ has an elementary complete
lattice refinement. No elementary closure system admits a proper complete lattice
refinement.

Proof. The condition of Lemma 1 is automatically fulfilled when the empty set
is closed and |nJ | = 1. Therefore, Ext(K | (G, G, =)) always is an elementary
complete lattice refinement if ∅ is closed.

If the closure system Ext(K) is elementary then g = gII and thus {g ∈ G |
gII ⊆ nJ} = nJ . The condition of Lemma 1 requires in this case that all attribute
extents of L are already extents of K. �	

Remark 1. Proposition 1 does not hold for lattice refinements in general
(without the prefix “complete”). As an example, consider the closure system
consisting of the set of natural numbers N and of all its finite subsets. It is ele-
mentary, and the closure system of all subsets of N is a proper lattice refinement.

Example 1. Example 1 shows, on the example of N5, an elementary complete
lattice refinement as given by Proposition 1 (middle, B(K̃)). The diagram on
the right, B(K̂) shows another elementary complete lattice refinement. Note
that Ext(K̂) refines Ext(K̃), but is no lattice refinement. In fact, according to
Proposition 1, Ext(K̃) cannot have a proper complete lattice refinement.
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a
c

b
2

3
1

K 1 2 3

a × ×
b ×
c ×

a cb

2,a 3,cb

1

K̃
1 2 3 a b c

a × × ×
b × ×
c × ×

a cb

2 3

m1

K̂
1 2 3 m

a × ×
b × ×
c × ×

Fig. 1. The lattice N5 = B(K), and two lattice refinements B(K̃) and B(K̂). The latter
two closure systems are both elementary and contain N5 as sublattice. The marked
nodes in the latter diagrams show the embeddings of N5 as closure system on the set
{a, b, c}.

A more appealing characterization of complete lattice refinements can be for-
mulated in terms of (object) implications. Let K := (G, M, I) be a formal context
and let

oImp(K) := {A → B | A ⊆ G, B ⊆ AII}.

A set A ⊆ G is called 1-closed if

A =
⋃

a∈A

aII ,

i.e., if a ∈ A aways implies aII ⊆ A. All closed sets of course are 1-closed, but
there may be others. For example, if P ⊆ G is pseudo-closed and |P | > 1, then
P also is 1-closed. Let

N := {A → B | A 1-closed, but not closed, B ⊆ AII}.

The implications in N are closely related to the non-unit implications considered
by Gély and Nourine [GN06]. If G is finite, it is clear that every implication of K

follows from N together with all unit implications g → gII , g ∈ G. This remains
true if we only use implications from the stem base of K (for object implications).

Note that the set ∅ is 1-closed. It does not respect the implication ∅ → ∅II iff
∅II 
= ∅. In this case ∅ → ∅II ∈ N .

Theorem 1. Ext(K | L) is a complete lattice refinement of Ext(K) iff Ext(L)
respects all implications in N .

Proof. The condition for a set X ⊆ G to respect N is that if A ⊆ X is 1-closed,
then AII ⊆ X . Every set X has a largest 1-closed subset, namely {g ∈ X | gII ⊆
X}. The closure of this set is also 1-closed and therefore must be the same, if X
respects N . Thus nJ satisfies the condition of Lemma 1 iff Θ(n) = Θ(n)II . �	

Using implications, it is now easy to characterize two important lattice
refinements of Ext(K), provided that ∅ is closed:
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– The coarsest (i.e., smallest) elementary complete lattice refinement of
Ext(K) is

Ext(K | (G, G, =)).

Its object implications are generated by all object implications of K that
have a premise with more than one element.

– The finest complete lattice refinement of Ext(K) has its object implications
generated by N . This refinement is elementary as well.

A characterization of the meet-irreducibles in the large refinement has been
described by Gély and Nourine [GN06].

Example 2. Another example of the maximal complete lattice refinement is given
in Figure 2. Starting from a small lattice, we obtain its finest complete lattice
refinement by computing its stem base, removing the implications with one-
element premise (and thereby obtaining a basis for N ). The sets respecting
these implications form the finest complete lattice refinement. The shaded points
indicate the original lattice as a complete sublattice.

K

a × × × ×
b ×
c × × × × ×
d × × ×
e × × ×

Ext(K)

a
b

c

de

H(sb(K)>1)

a
bc

de

Fig. 2. A lattice (Ext(K), ⊆) and its finest lattice refinement. The stem base is sb(K) =
{{b} → {a}, {d} → {c}, {e} → {c}, {a, c, e} → {d}, {a, b, c} → {d, e}}. The derived clo-
sure system is defined by the non-unit implications in the stem base.

2 The Lattice of Complete Lattice Refinements

It follows from Theorem 1 that the lattice of all complete lattice refinements of
Ext(K) is an interval in the lattice of all closure systems on the base set G.

It is not difficult to give a formal context for this lattice. Such a context
can have as objects all sets satisfying the conditions of Lemma 1, i.e. all N -
closed sets. As attributes we can take all object-implications that hold in K;
the incidence relation will be |=. The extents of this context then are precisely
the complete lattice refinements of Ext(K), its intents are the corresponding
implicational theories.

However, this context is quite large already for small K, and it is desirable
to reduce its size without changing the lattice structure. A first easy step is to
restrict the objects to all N -closed sets, which are not closed (in Ext(K)), and to
restrict the attribute set to implications of the form A → b, where A is N -closed
and b ∈ A′′ \ A.
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More challenging is to determine the irreducible objects and attributes. In
order to achieve this, we must study the object- and attribute order and the
arrow relations.

Lemma 2. Suppose Ext(K) is a closure system containing ∅ and let X, Y be
sets which are N -closed, but not in Ext(K), and let A → b, C → d be object
implications where A, C are N -closed, b ∈ A′′ \ A and d ∈ C′′ \ C. Then

1. X |= ⊆ Y |= ⇐⇒ Y ⊆ X and (Y ′′ \ Y ) ∩ X = ∅.
2. (A → b)|= ⊆ (C → d)|= ⇐⇒ A ⊆ C and d ∈ N (C ∪ {b}).

Proof. 1. We have

X |= ⊆ Y |= ⇐⇒ X |= A → b always implies Y |= A → b

⇐⇒ A ⊆ Y, b /∈ Y always implies A ⊆ X, b /∈ X.

To see that Y ⊆ X is necessary, choose A := Y . But with Y ⊆ X , the condition
A ⊆ X is immediate from A ⊆ Y , so that b /∈ Y must imply b /∈ X . This is the
condition in 1).

2. (A → b)|= ⊆ (C → d)|= holds iff for all X

X |= A → b implies X |= C → d,

which is true iff
C ⊆ X, d /∈ X implies A ⊆ X, b /∈ X.

Letting X := C, we obtain that A ⊆ C is necessary. But for A ⊆ C the condition
reduces to the following:

C ⊆ X, d /∈ X implies b /∈ X,

or, equivalently,
C ⊆ X, b ∈ X implies d ∈ X,

which is equivalent to d ∈ N (C ∪ {b}). �	

Lemma 3. Let Ext(K) be a closure system containing ∅. If X, A are N -closed
sets and b ∈ A′′ \ A then:

1. X ↙ (A → b) if and only if A ⊆ X and (Y ′′ \ Y ) ∩ X 
= ∅ for all N -closed
Y with A ⊆ Y � X,

2. X ↗ (A → b) if and only if A = X and X ∪ {b} is N -closed.

Proof. 1. From the definition of ↙ we get X ↙ (A → b) ⇐⇒

A ⊆ X, b /∈ X, and if Y � X, (Y ′′ \ Y ) ∩ X = ∅, then A 
⊆ Y or b ∈ Y.

For A = X this condition is always fulfilled. The possibility that it is fulfilled
for some A ⊂ X requires attention: A violation in this case could only occur for
a set Y with A ⊆ Y � X . For such a Y the conclusion of the condition is never
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true. Thus to avoid a violation of the condition, the premise must also be false.
That is what is stated in the lemma.
2. Again we unfold the definition of ↗ in this case:

X ↗ (A → b) ⇐⇒ A ⊆ X, b /∈ X, and (C 
⊆ X or d ∈ X)
for all C → d 
= A → b with A ⊆ C and d ∈ N (C ∪ {b}).

If A = X , then the only possible choice for a violation of the condition is C = X ,
d ∈ N (X ∪ {b}). To avoid such a violation, we must require that N (X ∪ {b})
contains no elements outside X , except b.

If A � X , we can choose C := X , d := b and obtain a violation since then

C ⊆ X, d /∈ X, A � C, d ∈ N (C ∪ {b}). �	

The following definition is adapted from Edelmann and Jamison [EJ85]:

Definition 1. A closure system Ext(K) on a set G is called convex geometry
iff for all A ∈ Ext(K) and for all g, h ∈ G \ A with g′′ 
= h′′ we have:

g ∈ (A ∪ {h})′′ ⇒ h /∈ (A ∪ {g})′′.

This condition is called anti-exchange property. ♦

Corollary 1. The lattice of all complete lattice refinements of Ext(K) is a con-
vex geometry.

This follows from [GW99, Theorem 44], and the fact that for each attribute
A → b there is at most one object X such that X ↗ A → b, namely X = A.
It is not surprising, since the lattice is an interval in the lattice of all closure
operators, and the latter is known to be a convex geometry. More about convex
geometries will be said in Theorem 3 and in Section 4.

Example 3. The formal context in Figure 3 demonstrates the results of Lemma 3.
Apparently all of the objects and most of the attributes are irreducible. This is
elaborated in Theorem 2. The concept lattice of this context has 2215 elements.

Theorem 2. For a closure system Ext(K) containing ∅ the reduced context for
the lattice of complete lattice refinements is given as follows:

1. The irreducible objects are the subsets of G which are N -closed but not in
Ext(K).

2. The irreducible attributes are the implications of the form A → b, where A
is N -closed, but not in Ext(K), b ∈ A′′ \ A, and A ∪ {b} is N -closed.

The incidence relation is |=.

This is immediate from Lemma 3, due to the well known fact that an object or
attribute is irreducible iff there is an arrow “pointing to it” [GW99, Prop. 13].
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{b} ↗↙ × × × × × × × × × × × × × × × × × × × × × × × × × × × ×
{d} × ↗↙ × × × × × × × × × × × × × × × × × × × × × × × × × × ×
{e} × × ↗↙ × × × × × × × × × × × × × × × × × × × × × × × × × ×

{a, d} × × ↗↙ × × × × × × × × × × × × × × × × × × × × × × × × ×
{a, e} × × × ↙ ↗↙ × × × × × × × × × × × × × × × × × × × × × × ×
{b, c} × × × × × ↙ ↗↙ ↗↙ × × × × × × × × × × × × × × × × × × × ×
{b, d} × × × × × × × ↙ ↗↙ ↗↙ × × × × × × × × × × × × × × × × ×
{b, e} × × × × × × × × × × ↗↙ ↗↙ ↗↙ × × × × × × × × × × × × × ×
{d, e} × × × × × × × × × × × × × ↗↙ × × × × × × × × × × × × ×

{a, b, d} × × × × × × × × × × × × × × ↙ ↗↙ × × × × × × × × × × ×
{a, b, e} × × × × × × × × × × ↙ ↙ × × × ↗↙ ↗↙ × × × × × × × × ×
{a, d, e} × ↙ × × × × × × × × × × × × × × ↗↙ × × × × × × × ×
{b, c, d} × × × × × ↙ × ↙ ↙ × ↙ × × × × × × × × × ↙ ↗↙ × × × × × ×
{b, c, e} × × × × × ↙ ↙ × × × × ↙ × ↙ × × × × × × × × ↙ ↗↙ × × × ×
{b, d, e} × × × × × × ↙ ↙ × ↙ ↙ × × × × × × × × × × ↗↙ ↙ × ×

{a, b, d, e} × × × × × × ↙ × × ↙ × ↙ × ↙ × × × × × × ↙ ↗↙ ×
{b, c, d, e} × × × × × ↙ × × ↙ × × ↙ × × × × × × × × ↙ × ↙ × × × × ↗↙

Fig. 3. The formal context for the complete lattice refinements of the lattice Ext(K)
from Figure 2, with the arrow relations. The object set contains all 1-closed sets, which
are not elements of Ext(K) and is therefore reduced. The attribute set contains all
implications of N with a singleton as conclusion and may be further reduced.

3 Special Elements of Closed Sets

Definition 2. Let K := (G, M, I) be a formal context and let A ∈ Ext(K) be a
closed set. An object g ∈ A is called

– an extremal point of A iff

g /∈ (A \ {h ∈ G | g′′ = h′′})′′,

– a base point of A iff

g /∈ (A \ {h ∈ G | g′′ ⊆ h′′})′′, and

– a maximal base point of A iff g is a base point of A and there is no base
point h of A with g′′ � h′′. ♦

It is immediate from the definition that extremal points are special base points,
and it is not difficult to prove that every base point g defines a join-irreducible
object-extent g′′ of the lattice (Ext(K), ⊆).

Definition 3. An element x of a complete lattice L is called
∨

-prime iff

x ≤
∨

t∈T

yt implies x ≤ yt for some t ∈ T

(for each index set T and all choices of yt ∈ L). ♦
This excludes the least element of the lattice.
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Lemma 4. A closed set X of a closure system Ext(K) on G is
∨

-prime iff
X = {x}′′ for some base point x of the largest extent G.

Proof. Let X be
∨

-prime in Ext(K). Clearly

X ≤
∨

x∈X

x′′,

and thus X ≤ x′′ for some x ∈ X , which implies X = x′′.
We claim that x is a base point of G. If not, then

x ∈ (G \ {h | x′′ ⊆ h′′})′′,

which translates to
X = x′′ ≤

∨

x′′ �⊆h′′
h′′.

Since X is
∨

-prime, we infer that

x′′ ⊆ h′′ for some h with x′′ 
⊆ h′′,

a contradiction in itself.
Conversely if X = x′′ for some base point x of G then if X ≤

∨
t∈T Yt, we get

x ∈ (
⋃

Yt)′′ and thus ⋃
Yt ∩ {h | x′′ ⊆ h′′} 
= ∅.

Thus there must be some t ∈ T and some h ∈ Yt such that x′′ ⊆ h′′. But then
X = x′′ ⊆ Yt, which shows that X is

∨
-prime. �	

Corollary 2. If X and Y are closed sets of Ext(K) with X ⊆ Y , then X is∨
-prime in the interval [∅′′, Y ] iff X = b′′ for some base point b of Y .

A reformulation of Definition 2 in terms of implications is sometimes helpful:

Proposition 2. Let A be a closed set and g ∈ G. Then

– g is an extremal point of A iff the following condition holds:
If X → g for some X ⊆ A, then g ∈ X.

– g is a base point of A iff the following condition holds:
If X → g for some X ⊆ A, then x → g for some x ∈ X.

The following proposition is now evident:

Proposition 3. If A is 1-closed, then all base points of A′′ are in A.

As a special case, we get

Proposition 4. If A and B are closed, then all base points of (A ∪ B)′′ are
in A ∪ B. More generally, if At is closed for all t ∈ T , then all base points of(⋃

t∈T At

)′′ are in
⋃

t∈T At.

This finally yields
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Proposition 5. If A, B, and C are closed and (A ∪ B)′′ is the closure of its
base points, then (A ∪ B)′′ = (A ∪ C)′′ implies (A ∪ B)′′ = (A ∪ (B ∩ C))′′.

Proof. All base points of (A ∪ B)′′ which are not in A belong to B, and also to
C, thus to B ∩ C. �	

Closure systems in which every closed set is the closure of its extremal points
(or, as a weaker condition, of its base points) are well studied, see the literature
cited for [GW99, Theorem 43, Theorem 44]. Here we restrict these results to the
finite case. Assuming finiteness allows us to restrict to the maximal base points:
If a f inite extent is the closure of its base points, then it is also the closure of
its maximal base points. The representation of a closed set X by the set

{g′′ | g maximal base point of X}

is called the canonical representation.

Theorem 3. Let K = (G, M, I) be a finite context.

1. Every element of Ext(K) is closure of its (maximal) base points if and only if
(Ext(K), ⊆) is a join-semidistributive lattice, i.e. iff for all A, B, C ∈ Ext(K):

(A ∪ B)′′ = (A ∪ C)′′ ⇒ (A ∪ B)′′ = (A ∪ (B ∩ C))′′.

2. Every element of Ext(K) is closure of its extremal points if and only if in
the lattice (Ext(K), ⊆) the anti-exchange property holds.

4 Convex Geometry Refinements

The problem whether every finite join-semidistributive lattice has a refinement
that is atomistic and join-semidistributive as well was affirmatively answered by
Adaricheva, Gorbunov, Tumanov [AGT03]. Later Adaricheva and Nation [AN03]
simplified the construction and showed that it refines each (finite) convex geom-
etry to the largest possible convex geometry refinement. We repeat their results
here because they give some idea of the role of the non-unit implications.

Let (Ext(K), ⊆) be a closure system on the finite set G. For A ∈ Ext(K) let
β(A) denote the set of base points of A.

Proposition 6. If A1 ⊆ A2 are closed, then β(A2) ∩ A1 ⊆ β(A1).

Lemma 5 (Adaricheva and Nation). Let (Ext(K), ⊆) be a closure system
on G in which every closed set is the closure of its base points. Define for all
S ⊆ G

ε(S) := S ∪
⋃

{A ∈ Ext(K) | β(A) ⊆ S}.

Then ε is a closure operator on G.
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Proof. We show that for C ∈ Ext(K) always

β(C) ⊆ ε(S) implies C ⊆ ε(S).

In fact, β(C) ⊆ ε(S) implies β(C) ⊆ S ∪
⋃

β(A)⊆S A. Thus for each p ∈ C we
have p ∈ S or p ∈ Ap for some closed set Ap with β(Ap) ⊆ S. Now let

B :=

⎛

⎝C ∪
⋃

p∈β(C)\S

Ap

⎞

⎠

′′

.

Clearly B is a closed set containing C and β(B) ⊆ C∪
⋃

β(Ap) by Proposition 4.
So if z ∈ β(B), then either z ∈ C or z ∈ Ap for some Ap with β(Ap) ⊆ S. In the
first case, if z ∈ C, we get from Proposition 6 with z ∈ β(B) that

z ∈ β(B) ∩ C ⊆ β(C) ⊆ ε(S),

and therefore that z ∈ Az for some closed set Az with β(Az) ⊆ S, as in the
second case.

In the second case, where z ∈ Ap ⊆ B for some Ap with β(Ap) ⊆ S, we infer
from Proposition 6 that

z ∈ β(B) ∩ Ap ⊆ β(Ap) ⊆ S,

a contradiction. �	

Note that the closure system described in Lemma 5 can be given in terms of
object implications as follows: It consists of those sets respecting all implications
in

AN (K) := {β(A) → A | A ∈ Ext(K)}.

It was assumed in Lemma 5 that every extent is the closure of its base points,
and it therefore might be surprising that AN (K) does not generate everything.
But note that for a one-generated extent g′′ we always have

β(g′′) = β(g′′ \ {h | h′′ = g′′}) ∪ {h | h′′ = g′′}.

Therefore, AN (K) contains no nontrivial implications with one-element premise,
and the derived closure system is elementary.

The following lemmas are also due to Adaricheva and Nation [AN03].

Lemma 6. The closure system described in Lemma 5 is a complete lattice re-
finement of Ext(K).

Proof. It suffices to show that N follows from AN . Let A be 1-closed. According
to Proposition 3, then β(A′′) ⊆ A, and the implication A → A′′ ∈ N follows
from β(A′′) → A′′ ∈ AN . �	

Lemma 7. The closure system described in Lemma 5 has the anti-exchange
property.
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Proof. Let C be ε-closed, let p 
= q ∈ G such that p ∈ ε(C ∪ {q}), p /∈ ε(C), and
assume q ∈ ε(C ∪ {p}). It was shown in the proof of Lemma 5 that there must be
closed sets Ap, Aq ∈ Ext(K) with p ∈ Ap, q ∈ Aq, β(Ap) ⊆ C ∪ {q} and β(Aq) ⊆
C ∪{p}. Since Ap ∪Aq ⊆ ε(C ∪{p, q}), we know that β((Ap ∪Aq)′′) ⊆ C ∪{p, q}.
But p /∈ β(Ap), and by Proposition 6 we conclude that p /∈ β((Ap ∪ Aq)′′). With
the same argument, q /∈ β((Ap ∪Aq)′′), so β((Ap∪Aq)′′) ⊆ C, a contradiction. �	

Example 4. Figure 2 shows an example of this construction. The smaller lattice
is join-semidistributive, so that each extent is the closure of its base points.
There are only two extents which are not equal to the set of their base points,
namely β(G) = {a, b, c} and β({a, c, d, e}) = {a, c, e}. In both cases the set of
base points is 1-closed. Hence the convex geometry refinement equals the largest
possible refinement. But that is an exceptional case.

5 Conclusion

The “non-unit implications” of a formal context (with ∅′′ = ∅) are those impli-
cations in the stem base which not having a one-element premise. They have the
same consequences as the set

N := {A → B | A 1-closed, but not closed, B ⊆ AII}.

The closure system of all sets respecting N is the largest lattice refinement of
the original one. In fact, the family of all complete lattice refinements forms a
lattice itself, and a context for this lattice can be given.

In case of a semidistributive closure system, a similar construction due to
Adaricheva and Nation leads to the largest convex geometry refinement.
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Abstract. In the paper we study lattices of axiomatizable classes and
relatively axiomatizable classes. This study is based on Formal Concept
Analysis [4,5]. The notion of a relatively axiomatizable class is a gener-
alization of such concepts as variety, quasivariety, ∀-axiomatizable class,
∃-axiomatizable class, Π0

n-axiomatizable class, Σ0
n-axiomatizable class

and so on. Relatively axiomatizable classes were studied in [10]. It is
proved in the paper that any finite lattice may be represented as the
lattice of all relatively axiomatizable subclasses of the class of all models
of a one-element signature with respect to some set of sentences. Also we
prove that any finite or countable complete lattice is isomorphic to the
lattice of all relatively axiomatizable subclasses of some class of models
with respect to a proper set of sentences.

Keywords: lattice, axiomatizable class, relatively axiomatizable class.

1 Introduction

The main goal of the present paper is to investigate the structure of various
lattices of relatively axiomatizable classes.

We consider classes of algebraic systems of finite or countable signature σ.
The sets of formulas and sentences of this signature are countable. Therefore in
this case the lattices of axiomatizable classes have power which is less or equal
to the continuum.

We show that any finite lattice may be represented as the lattice of all rela-
tively axiomatizable subclasses of the class of all models of the signature con-
sisting of one binary predicate symbol with respect to some subset of the set of
all sentences over the given signature. Also we prove that any finite or countable
complete lattice is isomorphic to the lattice of all relatively axiomatizable sub-
classes of some class of models of the given signature with respect to a proper
set of sentences over the given signature.

2 Preliminaries in Model Theory

The aim of this section is to introduce concepts, definitions and facts on the
model theory which are necessary for understanding of the proofs below. An
expert in the model theory may skip this section.
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2.1 Semantics of First Order Predicate Logic

First we give some basic definitions of the first order predicate logic.

Definition 1. An algebraic system (a model) is a tuple

A =< A; P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck >,

where the set A is called universe, P1, . . . , Pn are predicates defined on the set
A, f1, . . . , fm are functions defined on the set A and c1, . . . , ck are constants,
i.e. names of some (distinguished) elements of the set A. Usually the universe
of the algebraic system A is denoted by |A|, i.e. |A| := A.

The set σ =< P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck > is called signature of the
algebraic system A.

Definition 2. Consider a signature σ =< P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck >.
We give a definition of a term of the signature σ by induction:

1. The constants c1, ..., ck ∈ σ are terms and the variables x1, x2, ... are terms.
2. If t1, . . . , tn are terms, f ∈ σ and f is a symbol of function then f(t1, . . . , tn)

is a term.

Definition 3. We give also an inductive definition of a formula of the
signature σ:

1. If t1 and t2 are terms then t1 = t2 is a formula; if t1, . . . , tn are terms and
Pn ∈ σ is a predicate symbol then P (t1, . . . , tn) is a formula.

2. If φ, ψ are formulas then (φ ∨ ψ), (φ&ψ), (φ → ψ), ¬φ, ∀x φ and ∃x φ are
formulas.

Recall that an occurrence of a variable in a formula is called free if it does not
belong to the scope of a quantifier over this variable. A variable which has at
least one free occurrence in a formula is called free variable of the formula.
Denote by FV (ϕ) the set of all free variables of a formula ϕ. A formula having
no free variables is called sentence.

Definition 4. For a signature σ we denote:
T (σ) := {t | t is a term of the signature σ},
F (σ) := {ϕ | ϕ is a formula of the signature σ},
S(σ) := {ϕ | ϕ is a sentence of the signature σ} and
K(σ) := {A | A is a model of the signature σ}.

Remark 1. If σ1 ⊆ σ2 then

1. T (σ1) ⊆ T (σ2),
2. F (σ1) ⊆ F (σ2),
3. S(σ1) ⊆ S(σ2),
4. if σ1 �= σ2, then K(σ1) ∩ K(σ2) = ∅.
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Let us present some basic notions on cardinal numbers. Two sets have equal
cardinality (are equinumerous), denoted by ||A|| = ||B|| , if there is a bijective
mapping f : A → B. A set A is called countable if ||A|| = ||N||, A has the power
of the continuum if ||A|| = ||R||.

Proposition 1. ||R|| = ||℘(N)||, that is the cardinal number of the power set of
the set of natural numbers is continuum. The cardinal number of the power set
of a countable set is continuum.

Proposition 2. If a set A is countable, then the set
⋃

n∈N

An of all finite words

of the language A is countable too.

Corollary 1. The set of all formulas (as well as the set of all sentences) of
finite or countable signature is countable.

Now we give some necessary definitions and facts on model theory.

Definition 5. (The value of a term in a model.)
Consider a signature σ and a model A ∈ K(σ). Let X be a set of variables.

A mapping γ : X → |A| is called interpretation (of the variables from the
set X in the model A).

Let FV (t) ⊆ X for a term t ∈ T (σ).
We define the value of the term t in the model A under the interpretation

γ (denoted by tA[γ]) in the following way:

1. If t = c then tA[γ] = cA; if t = x then tA[γ] = γ(x).
2. If t = f(t1, ..., tn), where f ∈ σ and t1, ..., tn ∈ T (σ), then

tA[γ] = fA(tA1 [γ], ..., tAn [γ]).

Definition 6. (The truth value of a formula in a model)
Consider a signature σ and a model A ∈ K(σ). Let ϕ ∈ F (σ), FV (ϕ) ⊆ X

and a mapping γ : X → |A| be an interpretation.
We denote A |= ϕ[γ] if the formula ϕ is true in the model A under the inter-

pretation γ and denote A �|= ϕ[γ] if ϕ is false.
We define the relation A |= ϕ[γ] by induction in the following way:

A |= (t1 = t2)[γ] ⇔ A |= (tA1 [γ] = tA2 [γ]);
A |= P (t1, ..., tn)[γ] ⇔ A |= PA(tA1 [γ], ..., tAn [γ]);
A |= (ϕ1 ∨ ϕ2)[γ] ⇔ A |= ϕ1[γ] or A |= ϕ2[γ];
A |= (ϕ1&ϕ2)[γ] ⇔ A |= ϕ1[γ] and A |= ϕ2[γ];
A |= (ϕ1 → ϕ2)[γ] ⇔ A �|= ϕ1[γ] or A |= ϕ2[γ];
A |= ¬ϕ[γ] ⇔ A �|= ϕ;
A |= ∀xϕ(x)[γ] ⇔ A |= ϕ(a)[γ] for any a ∈ A;
A |= ∃xϕ(x)[γ] ⇔ there exists a ∈ A such that A |= ϕ(a)[γ].

A formula is called identically true, if it is true in any model under any in-
terpretation, it is called identically false, if it is false in any model under any
interpretation.
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Remark 2. A formula ϕ is identically true if and only if the formula ¬ϕ is
identically false.

Definition 7. We say that formulas ϕ and ψ are semantically equivalent
(and denote ϕ ∼ ψ) if

A |= ϕ[γ] ⇔ A |= ψ[γ].

for any model A ∈ K(σ(ϕ) ∪ σ(ψ)) and any interpretation
γ : FV (ϕ) ∪ FV (ψ) → |A|.

2.2 Predicate Calculus

Above we have presented a semantical approach to logic of predicates, which is
called Tarski-style truth definition.

The predicate calculus is a syntactic approach to first order logic. Below we
give some necessary definitions and statements.

Definition 8. A sequence of formulas ϕ1, ..., ϕn is called proof if for any i ≤ n
the formula ϕi either is an axiom, or is derived from the previous ones using a
rule of inference.

A formula ϕ is called provable if there exists a proof ϕ1, ..., ϕn = ϕ.

The following statements show the equivalence between syntactical and seman-
tical approaches.

Theorem 1. (Soundness Theorem) If a formula is provable then it is identically
true.

Theorem 2. (Goedel’s Completeness Theorem) Any identically true formula is
provable.

Corollary 2. A formula ϕ is provable if and only if ϕ it is identically true.

Definition 9. Let Γ ⊆ F (σ) and ϕ ∈ F (σ) for a signature σ. We denote:

1. Γ � ϕ if there exist formulas ϕ1, ..., ϕn ∈ Γ such that the formula
(ϕ1&...&ϕn → ϕ) is provable;

2. Γ � if there exist formulas ϕ1, ..., ϕn ∈ Γ such that the formula ¬(ϕ1&...&ϕn)
is provable; in this case we say that the set of formulas Γ is inconsistent;

3. Γ �� if the set Γ is not inconsistent; we say that such set Γ is consistent.

Remark 3. For any set of sentences T ⊆ S(σ) the following statements are
equivalent:

1. The set T is inconsistent.
2. T � ϕ holds for any ϕ ∈ S(σ).
3. There is ϕ ∈ S(σ) such that T � ϕ and T � ¬ϕ .
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Definition 10. Let Γ ⊆ F (σ) and T ⊆ S(σ). The set formulas Γ is satisfiable
if there is a model A ∈ K(σ) and an interpretation γ : FV (Γ ) → |A| such that
A |= Γ [γ]. We denote A |= Γ [γ] if

A |= ϕ[γ] for any formula ϕ ∈ Γ.

We say that A is a model of the set of sentences T and denote A |= T if

A |= ϕ for any ϕ ∈ T.

Theorem 3. (Henkin’s Model Existence Theorem) Any consistent set of formu-
las is satisfiable, i. e. has a model:

ifΓ �� then there exist A∈ K(σ(Γ )) and γ : FV (Γ ) → |A| such that A |= Γ [γ].

For the further consideration we need the notion of first order theory.

Definition 11. A set of sentences T ⊆ S(σ) is called (first order) theory of
a signature σ if

T � ϕ implies ϕ ∈ T for any ϕ ∈ S(σ).

i. e. the set of sentence T is deductively closed.

Remark 4. A set of sentences T ⊆ S(σ) is a theory of a signature σ if and
only if

T � ϕ is equivalent to ϕ ∈ T for any ϕ ∈ S(σ).

Corollary 3. Let T be a theory of a signature σ. Then T � if and only if T =
S(σ).

Recall that for a set of formulas (or sentences) Γ we denote by σ(T ) the set of
all signature symbols occurring in Γ .

Remark 5. Let T be a theory, σ = σ(T ), σ ⊆ σ1 and σ �= σ1. Then T is not a
theory of the signature σ1.

Definition 12. For a model A ∈ K(σ) the set

Th(A) := { ϕ | ϕ ∈ S(σ) and A |= ϕ }
is called elementary theory of the model A.

Models A, B ∈ K(σ) are called elementary equivalent (denoted by A ≡ B)
if Th(A) = Th(B), that is

A |= ϕ iff B |= ϕ for any ϕ ∈ S(σ).

Thus elementary equivalent models are indistinguishable by first order predicate
logic.

Roughly speaking, algebra studies algebraic systems up to isomorphism as
well as logic investigates these systems up to elementary equivalence.

Remark 6. The elementary theory of a model A is a consistent theory of the
signature σ(A).

We have presented almost all necessary definitions on model theory. Further
information on first order predicate logic and model theory can be found in
[2,3]. For definitions and results in lattice theory we refer to [1,8,4].
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3 Axiomatizable Classes

In this section we discuss the structure of lattices of axiomatizable classes.

3.1 Lattices of Axiomatizable Classes

First we give some necessary definitions.

Definition 13. Let K ⊆ K(σ). For a sentence ϕ ∈ S(σ) we denote K |= ϕ if

A |= ϕ for any A ∈ K.

For a set of sentences Γ ⊆ S(σ) we denote K |= Γ if

A |= ϕ for any A ∈ K and ϕ ∈ Γ.

The set of sentences

ThK := {ϕ ∈ S(σ) | K |= ϕ}

is called theory of the class K.
For a set of sentences Γ ⊆ S(σ) the class

K(Γ ) := Kσ(Γ ) := {A ∈ K(σ) | A |= ϕ for any ϕ ∈ Γ }

is called class axiomatized by Γ (in the signature σ).

Remark 7. A set of sentences Γ axiomatizes different classes if different sig-
natures are treated. It means that if Γ ⊆ S(σ1), Γ ⊆ S(σ2) and σ1 �= σ2 then
Kσ1

(Γ ) �= Kσ2
(Γ ). Moreover, clearly if σ1 �= σ2 then Kσ1

(Γ ) ∩ Kσ2
(Γ ) = ∅.

However the notation K(Γ ) is often used instead of Kσ(Γ ) if signature σ is fixed
or is not important.

Definition 14. A class K is called axiomatizable if K = K(Γ ) for some set
of sentences Γ (that is K = Kσ(Γ ) for a proper signature σ).

In this case Γ is called set of axioms for the class K.

Proposition 3. Each axiomatizable class is closed with respect to elementary
equivalence, i.e. if K is an axiomatizable class, A ∈ K and B ≡ A then
B ∈ K.

Proposition 4. K ⊆ K(Th(K)).

Proposition 5. If K = K(Γ ) then Γ ⊆ ThK, i.e. Γ ⊆ ThK(Γ )

Proposition 6. A class K is axiomatizable if and only if K = K(Th(K)).

Corollary 4. For any axiomatizable class K there is the largest (w.r.t. inclu-
sion) set of axioms, which is exactly Th(K).
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Proposition 7. A set of sentences Γ is a theory if and only if Γ = ThK(Γ ).

Corollary 5. The mappings K → ThK and T → K(T ) define a bijection
between axiomatizable classes and theories (of the same signatures).

Proposition 8. Let Γ1, Γ2 ⊆ S(σ) and K1, K2 ⊆ K(σ).

1. If Γ1 ⊆ Γ2 then K(Γ2) ⊆ K(Γ1).
2. If K1 ⊆ K2 then Th(K2) ⊆ Th(K1).

Corollary 6. The pair of mappings K → ThK and Γ → K(Γ ) is a Galois
connection between subsets of K(σ) and subsets of S(σ), ordered by inclusion.

Remark 8. In the general case the following statements do not hold:

1. K = K(Th(K)).
2. Γ = Th(K(Γ )).

Corollary 7. There are classes which are not axiomatizable.

We will present simple examples of non-axiomatizable classes. The following
theorem is very useful for proving that classes are not axiomatizable.

Theorem 4. (Maltsev’s Compactness Theorem) A set of sentences Γ is sat-
isfiable if and only if it is locally satisfiable, i.e. every finite subset of Γ is
satisfiable.

The next remark gives an example of application of the Maltsev’s Compactness
Theorem.

Remark 9. 1. The class Kf(σ) of the finite models of a signature σ is not
axiomatizable.

2. Suppose that a class K consists of finite models and for any natural number
n there exists a model from K which has more than n elements. Then the
class K is not axiomatizable.

Proof. Statement (1) is an immediate consequence of statement (2). Hence it is
sufficient to prove (2).

Suppose that a class K ⊆ K(σ) is axiomatizable, so K = K(Γ ) for a proper
set of sentences Γ ⊆ S(σ). For each natural number n consider a sentence
ϕn ∈ S(∅) which holds true in a model iff it has at least n elements. Denote
Δ := { ϕn | n ∈ N } and Λ = Γ ∪ Δ. It is not difficult to prove that every finite
subset of Λ is satisfiable. Hence, by the Maltsev’s Compactness Theorem, the
set Λ is satisfiable itself. Then there is a model A ∈ K(σ) such that A |= Λ.
Therefore, A |= Γ and A |= Δ, so A belongs to the class K and A is infinite,
which contradicts our assumption.

Thus the class K is not axiomatizable.

Corollary 8. Classes of finite groups, finite rings and finite fields are not
axiomatizable.
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Let us consider a question: what is a structure of the set of all axiomatizable
classes? First, is it a lattice?

Proposition 9. If classes K1 and K2 are axiomatizable then the classes K1∩K2

and K1 ∪ K2 are axiomatizable as well.

Proof. Assume that K1 = K(Γ1) and K2 = K(Γ2). Denote Γ ′ := Γ1 ∪ Γ2

and Γ ′′ := {ϕ ∨ ψ | ϕ ∈ Γ1 and ψ ∈ Γ2}. Then K1 ∩ K2 = K(Γ ′) and
K1 ∪ K2 = K(Γ ′′). Thus the classes K1 ∩ K2 and K1 ∪ K2 are axiomatizable.

Corollary 9. 1. For any signature the set of all axiomatizable classes of this
signature is a distributive lattice (w.r.t. inclusion).

2. For any class K of algebraic systems the set of all axiomatizable subclasses
of K is a distributive lattice.

3.2 Finitely Axiomatizable Classes

Now we pass on to a very important special case of axiomatizable classes —
finitely axiomatizable classes.

Definition 15. A class K is called finitely axiomatizable if there exists a finite
set of sentences Γ such that K = K(Γ ).

Remark 10. 1. A class K is finitely axiomatizable if and only if K = K({ϕ})
for a proper sentence ϕ ∈ S(σ).

2. If K = K({ϕ}) then K = K(¬ϕ), where K := K(σ) \ K.
3. A class K is finitely axiomatizable if and only if the class K is finitely ax-

iomatizable.

Theorem 5. A class K is finitely axiomatizable if and only if the classes K and
K are axiomatizable.

Corollary 10. Classes of infinite groups, infinite rings and infinite fields are
not finitely axiomatizable.

The following remark is obviously true.

Remark 11. If classes K1 and K2 are finitely axiomatizable then the classes
K1 ∩ K2 and K1 ∪ K2 are finitely axiomatizable too.

Corollary 11. 1. For any signature the set of all finitely axiomatizable classes
of this signature forms a distributive lattice.

2. For any class K the set of all finitely axiomatizable subclasses of K is a
distributive lattice.

4 Classes Axiomatizable by Formulas of Special Kinds

In this section we consider axiomatizable classes having axioms from some re-
stricted sets of sentences. Results on different restrictions on sets of axioms are
given in [12].
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4.1 Universally and Existentially Axiomatizable Classes

First we consider universally and existentially axiomatizable classes. These classes
play an important role in the model theory.

Definition 16. If a formula ψ(x, y) ∈ F (σ) is quantifier-free, x = (x1, ..., xn)
and y = (y1, ..., ym), then

the formula ∃x1...∃xnψ(x, y) is called ∃-formula and
the formula ∀x1...∀xnψ(x, y) is called ∀-formula.
A sentence ϕ is called ∃-sentence if it is an ∃-formula
and it is called ∀-sentence if it is an ∀-formula.
A class K is called ∃-axiomatizable if K = K(Γ ) for some Γ ⊆ S(σ) such

that ϕ is an ∃-sentence for any ϕ ∈ Γ .
A class K is called ∀-axiomatizable if K = K(Γ ) for a certain Γ ⊆ S(σ) such

that ϕ is an ∀-sentence for any ϕ ∈ Γ .

Definition 17. For a class K ⊆ K(σ) the set of sentences

Th∃(K) := { ϕ ∈ ThK | ϕ is an ∃-sentence } =

= { ϕ ∈ S(σ) | K |= ϕ and ϕ is an ∃-sentence }
is called ∃-theory of K and the set of sentences

Th∀(K) := { ϕ ∈ ThK | ϕ is an ∀-sentence } =

= { ϕ ∈ S(σ) | K |= ϕ and ϕ is an ∀-sentence }
is ∀-theory of K.

∃-theory Th∃(K) and ∀-theory Th∀(K) of a class K have quite similar properties
as the theory Th(K) of the class K has.

Proposition 10. 1. K ⊆ K(Th∀(K)).
2. K ⊆ K(Th∃(K)).

Proposition 11. 1. A classK is ∀-axiomatizable if and only ifK=K(Th∀(K)).
2. A class K is ∃-axiomatizable if and only if K = K(Th∃(K)).

The ∀-axiomatizable and ∃-axiomatizable classes have a good algebraic descrip-
tion in terms of subsystems and supersystems. Denote A ≤ B if an algebraic
system A is a subsystem of B. In this case we say that the system B is a super-
system of the system A.

Proposition 12. Let A, B ∈ K(σ), A ≤ B, a1, ..., an ∈ |A| and ϕ(x1, ..., xn)
be a quantifier-free formula of a signature σ. Then

A |= ϕ(a1, ..., an) if and only if B |= ϕ(a1, ..., an).

Thus the quantifier-free formulas keep truth values when we go from a system
to a subsystem and back.
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Definition 18. We say that a class K is closed under subsystems if it
contains all subsystems of each system from K, i.e. B ∈ K for any A ∈ K and
B ≤ A.

We say that a class K is closed under supersystems if it contains all
supersystems of each system from K, i.e. B ∈ K for any A ∈ K and B ≥ A.

Now we present an algebraic description of ∀-axiomatizable and ∃-axiomatizable
classes.

Theorem 6. Let a class K be axiomatizable.

1. K is ∀-axiomatizable if and only if K is closed under subsystems.
2. K is ∃-axiomatizable if and only if K is closed under supersystems.

4.2 Σ0
n- and Π0

n-Axiomatizable Classes

Before studying lattices of ∃-axiomatizable and ∀-axiomatizable classes we
present a very important generalization of concepts of ∃-formula and ∀-formula
— notions of Σ0

n-formula and Π0
n-formula respectively. These notions are useful

in model theory [2] and computability theory [6]. A similar notion of equivalence
modulo sentences with fixed number of quantifiers was studied in [11].

Definition 19. We define Σ0
n-formulas and Π0

n-formulas by induction over n.

1. A quantifier-free formula is a Σ0
0 -formula and a Π0

0 -formula.
2. If ψ is a Π0

n-formula then ψ itself and ϕ = ∃x1...∃xmψ are Σ0
n+1-formulas.

3. If ψ is a Σ0
n-formula then ψ itself and ϕ = ∀x1...∀xmψ are Π0

n+1-formulas.

Denote

Σn := { ϕ ∈ S(σ) | the sentence ϕ is a Σ0
n-formula } and

Πn := { ϕ ∈ S(σ) | the sentence ϕ is a Π0
n-formula }.

The following remark shows that ∃-formulas and ∀-formulas are special cases of
Σ0

n-formulas and Π0
n-formulas respectively.

Remark 12. 1. Σ1 ={ ϕ | ϕ is a ∃-sentence }, Π1 ={ ϕ | ϕ is a ∀-sentence }.
2. { ϕ | ϕ is a ∃-formula } = { ϕ | ϕ is a Σ0

1 -formula },
{ ϕ | ϕ is a ∀-formula } = { ϕ | ϕ is a Π0

1 -formula }.
3. A class K is ∀-axiomatizable if and only if K is Π1-axiomatizable.

A class K is ∃-axiomatizable if and only if K is Σ1-axiomatizable.

Further we will treat all types of axiomatizable classes mentioned above together.
To do it we introduce a general notion of Δ-axiomatizable class.

Definition 20. A class K is called Δ-axiomatizable if K = K(Γ ) and Γ ⊆ Δ.



Lattices of Relatively Axiomatizable Classes 231

Definition 21. We say that a set Δ ⊆ S(σ) is closed under disjunction modulo
equivalence (of formulas) if for any ϕ, ψ ∈ Δ there is a sentence ξ ∈ Δ such that
ξ ∼ (ϕ ∨ ψ).

Proposition 13. Suppose that a set of sentences Δ is closed under disjunc-
tion modulo equivalence. Then finite unions and intersections of Δ-axiomatizable
classes are Δ-axiomatizable: if classes K1 and K2 are Δ-axiomatizable then the
classes K1 ∩ K2 and K1 ∪ K2 are Δ-axiomatizable too.

Proof. Assume that Δ ⊆ S(σ), Γ1, Γ2 ⊆ Δ, K1, K2 ⊆ K(σ), K1 = K(Γ1) and
K2 = K(Γ2). Denote Γ ′ := Γ1 ∪ Γ2 and

Γ ′′ := { ξ ∈ Δ | ξ ∼ (ϕ ∨ ψ) for some ϕ ∈ Γ1 and ψ ∈ Γ2}.

Then K1 ∩ K2 = K(Γ ′) and K1 ∪ K2 = K(Γ ′′), moreover, Γ ′ ⊆ Δ and Γ ′′ ⊆ Δ.
Therefore, the classes K1 ∩ K2 and K1 ∪ K2 are Δ-axiomatizable.

Corollary 12. If a set of sentences Δ is closed under disjunction modulo equiv-
alence then the Δ-axiomatizable classes form a distributive lattice.

Proposition 14. For any n the sets Σn and Πn are closed under disjunction
modulo equivalence.

Proof. Consider sentences ϕ, ψ ∈ Σn. First we rename variables of ϕ such that
the resulting sentence ϕ1 ∼ ϕ would not have common variables with ψ. After
that we move all existential quantifiers outside the disjunction (ϕ1 ∨ ψ), which
may be moved without touching universal quantifiers. Then we move all universal
quantifiers outside the disjunction, not touching existential quantifiers. Next we
move all existential quantifiers outside the disjunction again, and so on. After
a finite number of such steps we obtain a Σ0

n-sentence ξ which is equivalent to
the initial disjunction: ξ ∼ (ϕ ∨ ψ). So ξ ∈ Σn. Therefore, the class Σn is closed
under disjunction modulo equivalence.

The fact that the class Πn is closed under disjunction modulo equivalence
may be proved in a similar way.

Corollary 13. For any n the set of all Σn-axiomatizable classes, as well as the
set of all Πn-axiomatizable classes, is a distributive lattice.

4.3 Varieties and Quasivarieties

In this section we consider lattices of varieties and quasivarieties. A variety
(quasivariety) is the class of all algebraic structures of a given signature satisfying
a given set of identities (respectively, quasiidentities).

Definition 22. (Atomic formulas of the signature σ)

1. If t1 and t2 are terms then t1 = t2 is an atomic formula.
2. If t1, . . . , tn are terms and Pn ∈ σ is a predicate symbol then P (t1, . . . , tn)

is an atomic formula.
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Definition 23. Let ψ, ϕ1, ..., ϕn be atomic formulas.

1. A sentence of the form ∀x1...∀xn(ϕ1&...&ϕn) is called identity.
2. A sentence of the form ∀x1...∀xn((ϕ1&...&ϕn) → ψ) is called quasiidentity.

Definition 24. 1. A class V is called variety if V = K(Γ ) for some set
of identities Γ .

2. A class Q is called quasivariety if Q = K(Γ ) for some set of quasiiden-
tities Γ .

Definition 25. Let K ⊆ K(σ).

1. A class V ⊆ K is called subvariety of K if V = {A ∈ K | A |= Γ} for
some set of identities Γ .

2. A class Q ⊆ K is called subquasivariety of K if Q = {A ∈ K | A |= Γ}
for some set of quasiidentities Γ .

Lattices of varieties and quasivarieties are very complicated. In the general case
these lattices are not distributive.

Problem. (G.Birkhoff, 1945, A.I.Maltsev, 1966) To describe lattices of subqua-
sivarieties for different quasivarieties.

Many results on lattices of varieties and quasivarieties are presented in [7,8,9].

5 Relatively Axiomatizable Classes

In this section we pass on to the main subject of the paper, the lattices of
relatively axiomatizable classes, which were studied in [10]. In this paper the
study of axiomatizable classes is based on Formal Concept Analysis [4,5].

5.1 Relatively Axiomatizable Classes and FCA

Definition 26. Let K0, K1 ⊆ K(σ) and Δ ⊆ S(σ). We say that the class K0 is
axiomatizable in the class K1 relatively to the set of sentences Δ if there exists
a set Γ ⊆ Δ such that K0 = {A ∈ K1 | A |= Γ}.

Recall that a class K ⊆ K(σ) is axiomatizable if there exists a set Γ ⊆ S(σ)
such that K = {A ∈ K(σ) | A |= Γ}. The notion of relatively axiomatiz-
able class is a generalization of the concept of axiomatizable class as well as of
such concepts as Σn-axiomatizable class, Πn-axiomatizable class, variety and
quasivariety.

Remark 13. Let K ⊆ K(σ). The class K is axiomatizable if and only if K is
axiomatizable in the class K1 = K(σ) relatively to the set of sentences Δ = S(σ).
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Remark 14. Let K ⊆ K(σ).

1. The class K is a variety if and only if K is axiomatizable in the class K(σ)
relatively to the set of sentences Δ = {ϕ ∈ S(σ) | ϕ is an identity}.

2. The class K is a quasivariety if and only if K is axiomatizable in the class
K(σ) relatively to the set of sentences Δ={ϕ ∈ S(σ) | ϕ is a quasiidentity}.

3. The class K is ∀-axiomatizable if and only if K is axiomatizable in the class
K(σ) relatively to the set of sentences Δ = {ϕ ∈ S(σ) | ϕ is an ∀-formula,
i.e. ϕ = ∀x1...∀xnψ(x), where ψ is quantifier-free}.

4. The class K is ∃-axiomatizable if and only if K is axiomatizable in the class
K(σ) relatively to the set of sentences Δ = {ϕ ∈ S(σ) | ϕ is an ∃-formula,
i.e. ϕ = ∃x1...∃xnψ(x), where ψ is quantifier-free}.

5. The class K is Πn-axiomatizable if and only if K is axiomatizable in the
class K(σ) relatively to the set of sentences Δ = Πn.

6. The class K is Σn-axiomatizable if and only if K is axiomatizable in the
class K(σ) relatively to the set of sentences Δ = Σn.

Definition 27. For K ⊆ K(σ) and Δ ⊆ S(σ) we denote

A(K, Δ) := {K0 | K0 is axiomatizable in K relatively to Δ} and

ThΔ(K) := {ϕ ∈ Δ | K |= ϕ}.

We consider A(K, Δ) as a set ordered by inclusion ⊆.

Remark 15. 1. A class K is Δ-axiomatizable if and only if K =K(ThΔ(K)).
2. For K, K ′ ∈ K(σ) we have K ∈ A(K ′, Δ) if and only if

K = {A ∈ K ′ | A |= ThΔ(K)}.

For each class K ⊆ K(σ) and set Δ ⊆ S(σ) we consider the formal context

(K, Δ, |=),

with derivation operator denoted by ()′ as usual [4].
The following statement is an immediate consequence of the definitions of

formal context and formal concept [4].

Remark 16. Let K ⊆ K(σ) and Δ ⊆ S(σ).

1. If A ⊆ K then A′ = ThΔ(A).
2. If B ⊆ Δ then B′ = {C ∈ K | C |= B}.

Recall that for a formal context (G, M, I) by B(G, M, I) we denote the lattice
of all formal concepts of the formal context (G, M, I).

Theorem 7. Let K ⊆ K(σ) and Δ ⊆ S(σ). Then K0 ∈ A(K, Δ) if and only if

(K0, ThΔK0) ∈ |B(K, Δ, |=)| .
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Proof. (⇒) Suppose that K0 ∈ A(K, Δ).
Then there exists Γ ⊆ Δ such that K0 = {A ∈ K | A |= Γ}. Then Γ ⊆

ThΔK0.
By the definition of ThΔK0 we have A |= ϕ for any A ∈ K0 and ϕ ∈ ThΔK0.
Suppose that A ∈ K and A |= ϕ for any ϕ ∈ ThΔK0. We have Γ ⊆ ThΔK0,

so A |= Γ and then A ∈ K0. Thus K0 = (ThΔK0)′.
Assume that ϕ ∈ Δ and A |= ϕ for any A ∈ K0. Then ϕ ∈ ThΔK0, so

ThΔK0 = (K0)′. Therefore, (K0, ThΔK0) ∈ B(K, Δ, |=).
(⇐) Let (K0, ThΔK0) ∈ B(K, Δ, |=). Then K0 ⊆K. We have K0 =(ThΔK0)′,

hence K0 = {A | A |= ThΔK0}. By definition, ThΔK0 ⊆ Δ, so K0 ∈ A(K, Δ).
Theorem 7 is proved.

Corollary 14. Let K ⊆ K(σ) and Δ ⊆ S(σ). Then K0 ∈ A(K, Δ) if and only
if (K0, Γ ) ∈ B(K, Δ, |=) for some Γ ⊆ Δ.

Proof. (⇒) is an obvious consequence of Theorem 7.
(⇐) Let (K0, Γ ) ∈ B(K, Δ, |=) and Γ ⊆ Δ. Then Γ = {ϕ ∈ Δ | A |=

ϕ for any A ∈ K0}, so Γ = ThΔK0. Hence (K0, ThΔK0) ∈ B(K, Δ, |=) and
K0 ∈ A(K, Δ), which completes the proof of Corollory 14.

Corollary 15. |B(K, Δ, |=)| = {(K0, ThΔK0) | K0 ∈ A(K, Δ)}.

Therefore, the classes which are axiomatizable in a class K relatively to a set
of sentences Δ are exactly extents of the formal concepts of the formal context
(K, Δ, |=).

Corollary 16. Let K ⊆ K(σ), Δ ⊆ S(σ), A ⊆ K and B ⊆ Δ.

1. A = A′′ if and only if A is axiomatizable in the class K relatively to the
set of sentences Δ.

2. B = B′′ if and only if B = ThΔ({C ∈ K | C |= B}).

This Corollary is similar to Propositions 6 and 7.

Corollary 17. A(K, Δ) ∼= B(K, Δ, |=) as ordered sets for any K ⊆ K(σ) and
Δ ⊆ S(σ).

Therefore, using properties of lattices of formal concepts [4] we have

Proposition 15. For K ⊆ K(σ) and Δ ⊆ S(σ) the set A(K, Δ) is a complete
lattice.

Corollary 18. Let us fix a signature σ.

1. If Δ is closed under disjunction modulo equivalence then the set of all Δ-
axiomatizable classes is a distributive complete lattice.

2. For any n the set of all Σn-axiomatizable classes is a distributive complete
lattice.

3. For any n the set of all Πn-axiomatizable classes is a distributive complete
lattice.
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5.2 Lattices of Relatively Axiomatizable Classes

For our further consideration we fix a signature σ = {R2}. It means that σ
consists of one symbol of a binary predicate.

Recall that for two formal contexts C1 = (G1, M1, I1) and C2 = (G2, M2, I2)
we say that C1 is isomorphic to C2 and denote C1

∼= C2 if there exist bijective
mappings f : G1 → G2 and h : M1 → M2 such that gI1m is equivalent to
f(g)I2h(m) for any g ∈ G1 and m ∈ M1.

Proposition 16. Consider a formal context C = (G, M, I) such that the cardi-
nality of the set G is less or equal to continuum and the cardinality of the set
M is less or equal to countable. There exist K ⊆ K(σ) and Δ ⊆ S(σ) such that
C ∼= (K, Δ, |=).

Proof. Let C = (G, M, I) be an arbitrary formal context with cardinality condi-
tions mentioned above. Consider the class of all ordered sets POS in the signature
σ. For convenience for any A ∈ POS and every a, b ∈ A we write a ≤ b instead
of R(a, b).

For each n ∈ N consider a sentence

ϕn := ∃x1...∃xn(
∧

i�=j

(xi �= xj) &
∧

i≤j

(xi ≤ xj) & ∀y(
∧

i

(y �= xi) →

→
∧

i

(¬(xi ≤ y)&¬(y ≤ xi))))

stating that there is a maximal w.r.t. inclusion linear ordered subset the cardi-
nality of which is equal to n, such that all other elements are not compatible
with the elements from this subset.

The set M is finite or countable, so there exists an injective mapping ν :
M → N and a mapping h : M → {ϕn | n ∈ N} such that h(m) = ϕν(m) for any
m ∈ M .

Denote Δ := h(M) = {h(m) | m ∈ M}. It is obvious that the mapping
h : M → Δ is bijective.

For any n ∈ N let Ln be a linear ordering consisting of n elements. Denote by
B a set of countable Boolean algebras with universe N.

The cardinality of isomorphism types of models from the set B is continuum.
So there exists a mapping f0 : G → B such that if g1 �= g2 then f0(g1) �∼= f0(g2).

For each g ∈ G we construct a model Ag ∈ POS in the following way. Denote
M(g) := {m ∈ M | gIm} and put Ag := f0(g) ∪

⋃

m∈M(g)

Lν(m). It means that

for the universe of this model we have |Ag| = |f0(g)| ∪
⋃

m∈M(g)

|Lν(m)| and the

predicate is defined as follows: RAg = Rf0(g) ∪
⋃

m∈M(g)

RLν(m) (here RL denotes

the predicate R in the model L).
It is not difficult to prove the following

Lemma 1. 1. If g1, g2 ∈ G and g1 �= g2 then Ag1 �∼= Ag2 .
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2. If g ∈ G and m ∈ M then gIm if and only if Ag |= ϕν(m).

Consider a mapping f : G → POS such that f(g) = Ag for any g ∈ G. Denote
K := f(G) = {Ag | g ∈ G}.

Then for any g ∈ G and m ∈ M we have gIm if and only if f(g) |= h(m).
Mappings g and h are bijective, so C ∼= (K, Δ, |=).

Proposition 16 is proved.

Theorem 8. For any finite or countable complete lattice L there exists a count-
able K ⊆ K(σ) and a countable Δ ⊆ S(σ) such that L ∼= A(K, Δ).

Proof. Consider a complete lattice L. Suppose that L is countable or finite. Put
G := L, M := L and I :=≤. By the Basic Theorem on Concept Lattices [4]
L ∼= B(G, M, I). Denote C := (G, M, I). Then G and M are finite or countable
sets. Then by Proposition 16 there exist K ⊆ K(σ) and Δ ⊆ S(σ) such that
C ∼= (K, Δ, |=).

Therefore L ∼= B(K, Δ, |=) and, by Corollary 17, L ∼= A(K, Δ).
Theorem 8 is proved.

Thus each countable complete lattice may by represented as the lattice of rela-
tively axiomatizable subclasses of some class K ⊆ K(σ) for a proper Δ ⊆ S(σ).

However, most interesting are classes which are axiomatizable in K(σ) rela-
tively to some Δ ⊆ S(σ). Varieties, quasivarieties, ∀- and ∃-axiomatizable classes
are such examples.

Definition 28. For A, B ∈ K(σ) and Δ ⊆ S(σ) we denote A ≡Δ B if

{ϕ ∈ Δ | A |= ϕ} = {ϕ ∈ Δ | B |= ϕ}

and [A]Δ := {B ∈ K(ϕ) | A ≡Δ B}. For K ⊆ K(σ) denote

K/Δ := {[A]Δ|A ∈ K}.

For ϕ ∈ Δ we denote [A]Δ |= ϕ if A |= ϕ.

It is obvious that Definition 28 is correct, i.e. does not depend on the choice of
B ∈ [A]Δ.

Proposition 17. For any finite object-clarified formal context C there exists
Δ ⊆ S(σ) such that C ∼= (K(σ)/Δ, Δ, |=).

Proof. Let C = (G, M, I) be a finite object-clarified formal context.
Case 1. Assume that there exists a formal object g ∈ G such that there is no

formal attribute m ∈ M with gIm.
Consider a sentence

ψ = ∀x∀y∀z((x ≤ x) & (((x ≤ y & y ≤ x) → x = y) &

& ((x ≤ y & y ≤ z) → x ≤ z)))
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stating that ≤ is a (partial) order.
The sets G and M are finite. Suppose that G={g1, ..., gn}, M ={m1, ..., mk},

gi �= gj for any i �= j, and mi �= mj for any i �= j.
For any i ≤ n we define εi = (εi

1, ..., ε
i
k) in the following way:

εi
j :=

{
1, if giImj ;
0, otherwise.

Denote ξ :=
∨

i≤n

(
∧

j≤k

ϕ
εi

j

j ), where ϕ0 := ¬ϕ and ϕ1 := ϕ.

Denote ψi := (ϕi&ψ&ξ) for any i ≤ k.
Note,that for any A ∈ K(σ) and i ≤ k we have:
– if A is not an ordered set then A �|= ψi;
– if A is an ordered set, A |= ϕi and there exists a formal object g ∈ G such

that A |= ϕj ⇔ gImj then A |= ψi;
– A �|= ψi otherwise.
Thus for any A ∈ K(σ) we have only two possibilities:
– A �|= ψi for any i ≤ k;
– there exists g ∈ G such that A |= ψi if and only if gImi for any i ≤ k.
Recall that G contains a formal object g ∈ G such that gIm is not true for any

m ∈ M . Therefore for any A ∈ K(σ) there is g ∈ G such that A |= ψi ⇔ gImi

for each i ≤ k.
Moreover, for any g ∈ G there is a model A ∈ K(σ) such that A |= ψi if and

only if gImi for any i ≤ k.
For convenience of further consideration we denote ξi := ψi for any i ≤ k.
Put Δ := {ξ1, ..., ξk}.
Case 2. For any g ∈ G there is m ∈ M such that gIm.
Denote

ξi :=
{

((ψ & ξ) → ψi) if ε1
i = 1;

ψi, if ε1
i = 0.

Put Δ := {ξ1, ..., ξk}.
It is easy to prove the following

Lemma 2. Let A ∈ K(σ).
a) If A |= (ψ & ξ) then A |= ξj if and only if A |= ψj for any j ≤ k;
b) If A |= (ψ & ξ) then there is i ≤ n such that (A |= ξj if and only if giImj)

for any j ≤ k;
c) If A |= ¬(ψ & ξ) then (A |= ξj if and only if ε1

j = 1) for any j ≤ k;
d) There is g ∈ G such that (A |= ξj if and only if gImj) for any j ≤ k;
e) For each g ∈ G there is a model L ∈ K(σ) such that (L |= ξj if and only if

gImj) for any j ≤ k.

Further we treat Case 1 and Case 2 simultaneously.
We consider the formal context CΔ := (K(σ)/Δ, Δ, |=). By the definition of

CΔ this formal context is object-clarified. Recall that the formal context C is
object-clarified too. Then, in virtue of Lemma 2 (d,e), there exists a bijective
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mapping f : G → K(σ)/Δ such that for each g ∈ G we have (gImi if and only
if f(g) |= ξi) for any i ≤ k.

Consider a mapping h : M → Δ defined as follows: h(mi) = ξi for any i ≤ k.
Obviously h is a bijective mapping.
Thus for any g ∈ G and i ≤ k we have gImi if and only if f(g) |= h(mi).

Therefore, C ∼= (K(σ)/Δ, Δ, |=).
Proposition 17 is proved.

Theorem 9. For any finite lattice L there exists Δ ⊆ S(σ) such that

L ∼= A(K(σ), Δ).

Proof. Let L be a finite lattice. By the Basic Theorem on Concept Lattices [4]
L ∼= B(G, M, I), where G := L, M := L and I :=≤ .

So the sets G and M are finite. Then, by Proposition 17, there exists Δ ⊆ S(σ)
such that (G, M, I) ∼= (K(σ)/Δ, Δ, |=). Therefore

L ∼= B(K(σ)/Δ, Δ, |=) .

The formal context (K(σ)/Δ, Δ, |=) is the object clarification of the formal con-
text (K(σ), Δ, |=). Then B(K(σ)/Δ, Δ, |=) ∼= B(K(σ), Δ, |=). By Corollary 17
A(K(σ), Δ) ∼= B(K(σ), Δ, |=). Therefore L ∼= A(K(σ), Δ).

Theorem 9 is proved.

Thus each finite lattice may be represented as a lattice of all relatively axioma-
tizable subclasses of K(σ) for a proper set Δ ⊆ S(σ).

Problem 1. What are the lattices of all relatively axiomatizable subclasses of
K(σ) for various sets Δ ⊆ S(σ)? Is it the class of all complete lattices?

Acknowledgements. I am very grateful to Rudolf Wille, Karl Erich Wolff and
Peter Burmeister for interesting discussions which have inspired me to make this
investigation.
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Abstract. Double Boolean algebras were introduced in [Wi00a] as a
variety fundamental for Boolean Concept Logic, an extension of Formal
Concept Analysis allowing negations of formal concepts. In this paper,
the free double Boolean algebra generated by the constants is described.
Moreover, we show that every free double Boolean algebra with at least
one generator is infinite. A measure of the complexity of terms specific for
double Boolean algebras is introduced. This, together with a modification
of the algorithm for protoconcept exploration (cf. [Vo04]) yields double
Boolean algebras containing a counterexample to every term identity up
to a given complexity if the identity does not hold in general. These
algebras can be constructed automatically, thus the word problem for
free double Boolean algebras is solved.

1 Introduction

Double Boolean algebras form the variety generated by protoconcept algebras.
Protoconcept algebras were defined in order to introduce negations of concepts in
Formal Concept Analysis and to develop a Boolean Concept Logic in the frame-
work of Contextual Logic (see [Wi00b] for an introduction to Contextual Logic,
[Wi00a] for an introduction to Boolean Concept Logic). For the development
of Boolean Concept Logic, a solution to the word problem for the free double
Boolean algebras is essential. In[HLSW00] Herrmann et al. show that double
Boolean algebras have the finite embedding property. Since double Boolean al-
gebras are finitely axiomatized it follows that their universal theory is decidable.
Moreover, as every Boolean algebra may be regarded as a double Boolean alge-
bra, this decision problem is NP-complete.

In this paper, a measure for the compelxity of terms appropiate for double
Boolean algebras is developed and an upper bound for the size of a minimal
counterexample to an invalid term identity s ∼ t depending of the complexity
of s and t is derived. Moreover, a class of protoconcept algebras containing all
counterexamples for invalid term identities up to a given level of complexity
is described. An algorithm for the automated construction of their underlying
contexts is given. This provides a semantic solution of the word problem for free
double Boolean algebras where the algorithm depends only of the complexity of
the terms.
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In Section 1, the basic definitions for double Boolean algebras and protocon-
cept algebras are introduced. Moreover, the free double Boolean algebra gener-
ated by the constants is described. In Section 2, an algorithm for the stepwise
exploration of double Boolean algebras is developed. The application of this
algorithm to free double Boolean algebras in Section 3 yields a class of coun-
terexamples to invalid term identities depending on the complexity of the terms
and the number of variables. An upper bound for the size of a minimal coun-
terexample is derived in Corollary 4. Section 4 is dedicated to the automated
generation of the contexts underlying the described class of counterexamples.

1.1 Double Boolean Algebras and Protoconcept Algebras

Double Boolean Algebras

Definition 1. A double Boolean algebra is an algebra D := (D,�,�,¬,�,⊥,�)
of type (2,2,1,1,0,0), satisfying the equations

1a) (x � x) � y = x � y 1b) (x � x) � y = x � y
2a) x � y = y � x 2b) x � y = y � x
3a) x � (y � z) = (x � y) � z 3b) x � (y � z) = (x � y) � z
4a) x � (x � y) = x � x 4b) x � (x � y) = x � x
5a) x � (x�y) = x � x 5b) x � (x�y) = x � x
6a) x � (y�z) = (x � y)�(x � z) 6b) x � (y�z) = (x � y)�(x � z)
7a) ¬¬(x � y) = x � y 7b) ��(x � y) = x � y
8a) ¬(x � x) = ¬x 8b) �(x � x) = �x
9a) x � ¬x = ⊥ 9b) x � �x = �
10a) ¬⊥ = � �� 10b) �� = ⊥ �⊥
11a) ¬� = ⊥ 11b) �⊥ = �
12) (x � x) � (x � x) = (x � x) � (x � x)

with the operations �,�,�,� defined by

x�y := ¬(¬x � ¬y)
x�y := �(�x � �y)
� := ¬⊥
� := ��

A pure double Boolean algebra is a double Boolean algebra that satisfies the
additional condition

13) x = x � x or x = x � x.

To shorten notation we write x� for x � x and x� for x � x, and define D� :=
{x� | x ∈ D}, D� := {x� |x ∈ D} and Dp := D� ∪D�. The restriction of D to
Dp is a pure subalgebra of D.

On double Boolean algebras we define a quasi-order 	 by:

x 	 y :⇔ x � y = x� and x � y = y�.
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Some basic properties of double Boolean algebras were discussed in [HLSW00]:

Theorem 1. Let D := (D,�,�,¬,�,⊥,�) be a double Boolean algebra. Then
the following conditions are satisfied:

(1) (D,	) is a quasi-ordered set.
(2) D� := (D�,�,�,¬,⊥,�) is a Boolean algebra whose order relation

is the restriction of 	 to D�.
(3) D� := (D�,�,�,�,�,�) is a Boolean algebra whose order relation

is the restriction of 	 to D�.
(4) y 	 x� ⇔ y 	 x for x ∈ D and y ∈ D�.
(5) x� 	 y ⇔ x 	 y for x ∈ D and y ∈ D�.
(6) x 	 y ⇔ x� 	 y� and x� 	 y� for x, y ∈ D.

Protoconcept algebras. Protoconcepts were defined in order to introduce
negations on formal concepts. We briefly repeat the basic definitions since pro-
toconcept algebras form an important class of examples for double Boolean alge-
bras. We assume that the reader is familiar with Formal Concept Analysis, for a
textbook we refer to [GW99]. An analysis of the meaning of protoconcepts and
the two operations “negation” (¬) and “opposition” (�) is presented in [Wi00a]
and [VW03].

Definition 2. A protoconcept of a formal context K := (G, M, I) is a pair
(A, B) with A ⊆ G and B ⊆ M such that A′ = B′′ or, equivalently, A′′ = B′.
We denote the set of all protoconcepts of a context K by P(K) and define on
P(K) operations �, �, �, ¬, � and ⊥ by:

(A1, B1) � (A2, B2) := (A1 ∩A2, (A1 ∩A2)′)
(A1, B1) � (A2, B2) := ((B1 ∩B2)′, B1 ∩B2)

¬(A, B) := (G \A, (G \A)′)
�(A, B) := ((M \B)′, M \B)

� := (G, ∅)
⊥ := (∅, M)

The set of all protoconcepts of a context K together with these operations is called
the protoconcept algebra of K and denoted by P(K).

On protoconcept algebras the quasi-order 	 is an order relation and

(A1, B1) 	 (A2, B2)⇔ A1 ⊆ A2 and B1 ⊇ B2

Note that the result of any operation in a protoconcept algebra is a protoconcept
of the form (A, A′) or (B′, B). These protoconcepts are called �-semiconcepts
or �-semiconcepts, respectively. The set of all �-semiconcepts of a protocon-
cept algebra P(K)(= D) is denoted by P(K)� (= D�) and the set of all �-
semiconcepts by P(K)� (= D�). As before, the set H(K) := P(K)� ∪ P(K)�
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(G,∅)

(23,b)(13,a)

(1,a)

(3,ab)

(13,ac)
(23,bc)

(G,c)

(∅,ab) (3,M)

(1,ac)

(∅,M)

(2,bc)

(12,c)

(2,b)

(12,∅)

1
2

3

a b c

Fig. 1. A context and its protoconcept algebra

of all semiconcepts of K, together with the operations of P(K) is a subalgebra
of P(K). We call this subalgebra the semiconcept algebra of the context K.

Note that the formal concepts of a context are those protoconcepts that are
both �- and �-semiconcepts.

Example 1. Figure 1 depicts a context and its protoconcept algebra. The el-
ements represented by filled circles are formal concepts. The circles with the
upper half filled represent �-semiconcepts, those with the lower half filled rep-
resent �-semiconcepts.

In [Wi00a] it was shown that the axioms of double Boolean algebras generate
the equational theory of protoconcept algebras.

Basic Theorems for semiconcept algebras and protoconcept algebras.
In [VW03] Basic Theorems for semiconcept algebras and protoconcept algebras
were shown. In order to quote them here we have to introduce the notions of
contextual, fully contextual and complete double Boolean algebras: A double
Boolean algebra D is called contextual if its quasiorder 	 is antisymmetric, i.e.
the relation 	 is an order on D. A contextual double Boolean algebra D is said
to be fully contextual if, in addition, for each x ∈ D� and y ∈ D� with x� = y�
there is a unique z ∈ D with z� = x and z� = y. The double Boolean algebra D
is called complete if and only if its Boolean algebras D� and D� are complete.

Theorem 2 (The Basic Theorem on Semiconcept Algebras). For a con-
text K := (G, M, I), the semiconcept algebra H(K) is a complete pure double
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Boolean algebra whose Boolean algebras H�(K) and H�(K) are atomic. The
(arbitrary) meet and join of H(K) are given by

�
t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋂

t∈T

At)′) and
⊔

t∈T

(At, Bt) = ((
⋂

t∈T

Bt)′,
⋂

t∈T

Bt).

In general, a complete pure double Boolean algebra D whose Boolean algebras D�
and D� are atomic, is isomorphic to H(K) if and only if there exist a bijection
γ̃ from G onto the set A(D�) of all atoms of D� and a bijection μ̃ from M
onto the set C(D�) of all coatoms of D� such that gIm ⇔ γ̃(g) 	 μ̃(m) for all
g ∈ G and m ∈M . In particular, for any complete pure double Boolean algebra
D whose Boolean algebras are atomic, we get D ∼= H(A(D�), C(D�),	), i.e., the
semiconcept algebras are up to isomorphism the complete pure double Boolean
algebras D whose Boolean algebras D� and D� are atomic.

Theorem 3 (The Basic Theorem on Protoconcept Algebras). For a con-
text K := (G, M, I), the protoconcept algebra P(K) of K is a complete fully con-
textual double Boolean algebra whose Boolean algebras H�(K) and H�(K) are
atomic. The (arbitrary) meet and join of P(K) are given by

�
t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋂

t∈T

At)′) and
⊔

t∈T

(At, Bt) = ((
⋂

t∈T

Bt)′,
⋂

t∈T

Bt).

In general, a complete fully contextual double Boolean algebra D whose Boolean
algebras D� and D� are atomic, is isomorphic to P(K) if and only if there
exist a bijection γ̃ from G onto the set A(D�) of all atoms of D� and a bi-
jection μ̃ from M onto the set C(D�) of all coatoms of D� such that gIm ⇔
γ̃(g) 	 μ̃(m) for all g ∈ G and m ∈ M . In particular, for any complete fully
contextual double Boolean algebra D whose Boolean algebras are atomic, we get
D ∼= P(A(D�), C(D�),	), i.e., the protoconcept algebras are up to isomorphism
the complete fully contextual double Boolean algebras D whose Boolean algebras
D� and D� are atomic.

1.2 Terms and Free Double Boolean Algebras

In this subsection terms and free double Boolean algebras are introduced in
accordance with the standard definitions of universal algebra (cp. [BS00] for
example). Moreover, a notion of the complexity of terms which is specific for
double Boolean algebras is defined. The free double Boolean algebra generated
by the constants is described and, finally, it is shown that every free double
Boolean algebra with at least one generator is infinite.

Definition 3. Let X be a set of variables with {⊥,�,¬,�,�,�} ∩X = ∅. The
set T (X) of all terms over X is defined recursively by:

1. X ∪ {⊥,�} ⊆ T (X)
2. s, t ∈ T (X) ⇒ {(¬s), (�s), (s � t), (s � t)} ⊆ T (X)
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As before we write � for (���), � for (⊥�⊥), (s�t) for (¬((¬s)�(¬t))), (s�t)
for (�((�s)� (�t))), t� for (t� t) and t� for (t� t). In order to avoid unnecessary
parentheses we write x1f1x2f2x3 . . . fn−1xn for (. . . (x1f1x2)f2x3) . . . )fn−1xn)
with f1, . . . , fn ∈ {�,�,�,�} and x1, . . . , xn ∈ X .

For A := {a1, . . . , an} we set�A := a1 � a2 � a3 · · · � an and define likewise⊔
A,�A and�A.
Term functions are a common concept in universal algebra. They are used

throughout the paper, therefore we give the definition briefly:

Definition 4. Given a term p(x1, . . . xn) and a double Boolean algebra D we
obtain a function pD : Dn → D as follows:

1. If p is a variable xi, then

pD(a1, . . . , an) := ai

for a1, . . . , an ∈ D.
2. Otherwise we set

(a) pD(a1, . . . , an) := (¬pD
1 (a1, . . . , an)) if p(x1, . . . , xn) = (¬p1(x1, . . . , xn))

(b) pD(a1, . . . , an) := (�p
D
1 (a1, . . . , an)) if p(x1, . . . , xn) = (�p1(x1, . . . , xn))

(c) pD(a1, . . . , an) := (p1(a1, . . . , an) � p2(a1, . . . , an)
if p(x1, . . . , xn) = (p1(x1, . . . , xn) � p2(x1, . . . , xn))

(d) pD(a1, . . . , an) := (p1(a1, . . . , an) � p2(a1, . . . , an)
if p(x1, . . . , xn) = (p1(x1, . . . , xn) � p2(x1, . . . , xn))

for a1, . . . , an ∈ D.

The definition of free double Boolean algebras follows [BS00].

Definition 5. Let D be the variety of double Boolean algebras. Given a set X
of variables we define a congruence relation ≈ on T (X) by

s ≈ t :⇔ (s, t) ∈
⋂

ΦD(X),

where
ΦD(X) := {φ ∈ Con T (X) | T (X)/φ ∈ D};

and then define D(X), the free double Boolean algebra over X, by

D(X) := T (X)/ ≈ .

The ≈-congruence class of a term t is denoted with t. Note that for x, y ∈ X we
have x �= y if x �= y since D contains nontrivial algebras. It is well known that
D(X) ∈ D and that for s(x1, . . . xn), t(x1, . . . xn) ∈ T (X) holds

s ≈ t⇔ sD = tD in every double Boolean algebra D.

Example 2. Fig. 2 depicts the free double Boolean algebra generated by the
empty set (cp. Proposition 1). Since it is a pure, finite double Boolean algebra,
it is isomorphic to the semiconcept algebra of the given context.
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1

2

a b (12, ∅) = �

(2, a) =
(12, b) =

(2, ab) =
(1, b) = ¬

(∅, ab) = ⊥

Fig. 2. A protoconcept algebra isomorphic to the free double Boolean algebra generated
by the empty set

Example 3. There are infinite double Boolean algebras generated by a single ele-
ment: Let G := {g1, g2, . . . } be a countable set of objects, let M := {m1, m2, . . . }
be a countable set of attributes and define an incidence relation I by

gi I mj :⇔ j �∈ {i− 1, i}.

Then with K := (G, M, I) (cp. Fig. 3) the element p ∈ H(K), p := ({g1}, {g1}′)
generates an infinite subalgebra of H(K): We obtain the elements ({m1}′, {m1}) =
�p, ({g2}, {g2}′) = ¬�p�¬p and ({m2}′, {m2}) = �(¬�p�¬p)�p from p. For i ≥
2 the elements {({g1}, {g1}′), . . . , ({gi}, {gi}′), ({m1}′, {m1}), . . . , ({mi}′, {mi})}
generate

({gi+1}, {gi+1}′) = ¬({mi}′, {mi}) � ¬({gi}, {gi}′)
and

({mi+1}′, {mi+1}) = �({gi+1}, {gi+1}′) � �({mi}′, {mi}).
For our investigation, an appropiate measure of the complexity of terms for dou-
ble Boolean algebras is needed. In Example 3 an infinite subalgebra is generated
through permanent switches from �-semiconcepts to �-semiconcepts and back.
This suggests to take the number of switches between D� and D� as a measure
for the complexity.

Definition 6. For a finite set X of variables we set:

T�(X) := {t ∈ T (X) | t = (t1 � t2) or t = (¬s) for t1, t2, s ∈ T (X)} ∪ {⊥}
T�(X) := {t ∈ T (X) | t = (t1 � t2) or t = (�s) for t1, t2, s ∈ T (X)} ∪ {�}.
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g1

g2

g3

g4

g5

m1 m2 m3 m4 m5 . . .

. . .

. . .

. . .

. . .

. . .

. . .. . .. . .. . .. . . . . . . . .

Fig. 3. The context of Example 3

We define the complexity k(t) of a term t inductively by:

k(x) := 0 for x ∈ X,
k(⊥) := k(�) := 1 and

k(t1 � t2) := max({k(ti) | ti ∈ T�(X), i ∈ {1, 2}}
∪{1 + k(ti) | ti �∈ T�(X), i ∈ {1, 2}})

k(t1 � t2) := max({k(ti) | ti ∈ T�(X), i ∈ {1, 2}}
∪{1 + k(ti) | ti �∈ T�(X), i ∈ {1, 2}})

k(¬t) =
{

k(t) for t ∈ T�(X)
1 + k(t) for t �∈ T�(X)

k(�t) =
{

k(t) for t ∈ T�(X)
1 + k(t) for t �∈ T�(X) .

In the following we will often need the set of all terms over a given set of variables
with complexity less or equal to a given natural number. Therefore, we define:

Definition 7. For a finite set of variables X we set

T i(X) := {t ∈ T (X) | k(t) ≤ i}
T i
�(X) := {t ∈ T�(X) | k(t) ≤ i}
T i
�(X) := {t ∈ T�(X) | k(t) ≤ i}.

The free double Boolean algebra D(∅). The free double Boolean algebra
generated by the empty set was first described in [Vo02]. We briefly repeat the
results given there.
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Lemma 1. Let D be a double Boolean algebra. then

1) x, y ∈ D� ⇒ x � y 	 x�y

2) x, y ∈ D� ⇒ x�y 	 x � y.

Proof. From Theorem 1.5 we obtain x � y 	 x�y ⇔ (x � y)� 	 x�y. Since the
map a �→ a � b preserves 	 and � (cp. [Wi00a]) follows x � y 	 x⇒ (x � y)� 	
x� (x�y) = x�x = x. Analogously we obtain (x�y)� 	 y. From (x�y)� ∈ D�
follows (x � y)� 	 x�y and thus 1). Dually, 2) is obtained. �

Lemma 2. Let D be a double Boolean algebra and x ∈ D�, y ∈ D�. Then
x � �x = � and y � ¬y = �.

Proof. We show x� �x 	 � and � 	 x� �x and use that 	 is an order on Dp.
The previous lemma yields x � �x 	 x��x = �. Conversely, � 	 x � �x, since
(x��x)�� = (x��x)�⊥ = (x��x)� and (x��x)�� = (x��)� (�x��).
Since x ∈ D� we have � 	 x and � 	 �x. This yields � = ��� 	 (x��) and
� 	 (�x��). Thus (x��)� (�x��) = (x��)��� (�x��)�� = ���. �

Proposition 1. The free double Boolean algebra D(∅) is the double Boolean
algebra depicted in Fig. 2.

Proof. The following tables show that the set {�,⊥,�,�,��,¬�} is closed
under the operations �,¬,� und �.

¬ �

� ⊥ �

⊥ � �
� ⊥ ��

� ¬� �
¬� � ��

�� ¬� �

� � ⊥ � � ¬� ��
� � ⊥ � � ¬� �

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
� � ⊥ � � ¬� �

� � ⊥ � � ⊥ �

¬� ¬� ⊥ ¬� ⊥ ¬� ⊥
�� � ⊥ � � ⊥ �

� � ⊥ � � ¬� ��
� � � � � � �
⊥ � � � � � ��

� � � � � � �
� � � � � � ��

¬� � � � � � �
�� � �� � �� � ��

Most of these equations follow easily from the axioms. Lemma 2 is needed to
determine �� � � = � and ¬� � � = �. Then ¬� � ¬� = ¬� � � = �

is obtained from x � � = x � x. Dually follows �� � �� = �. This implies
�¬� = �(¬� � ¬�) = �� and, dually, ¬�� = ¬�.

2 An Algorithm for the Stepwise Exploration of Double
Boolean Algebras

In this section an algorithm for the stepwise exploration of double Boolean al-
gebras is developed. It is a generalization of the algorithm for protoconcept ex-
ploration as introduced in [Vo04]. The basic idea of the exploration approach as
a knowledge acquisition tool was formulated early in the development of Formal
Concept Analysis (cp. [Wi82]) and led to exporation algorithms for attributes
(cp. [GW99], [Bu00]) and concepts (cp. [St97]). The common assumption is that
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in applications of Formal Concept Analysis we may have only implicit knowl-
edge of a domain of interest and it may be impossible to write down explicitly
all objects, all attributes and their incidence relation in a context, although
some attributes, concepts or protoconcepts may be ‘fairly clear’. The aim of
protoconcept exploration can be stated as follows: We assume that there exists
an underlying protoconcept algebra P

u
= P(Gu, Mu, Iu) which may be only

‘vaguely known’ by the investigator. For a finite subset B = {p1, . . . pn} of P
u
,

the set of basic protoconcepts, protoconcept exploration shall support him in
determining the structure of the subalgebra P

g
of P

u
which is generated by

B. Therefore, the algorithm generates questions about implications between the
identified protoconcepts. The answers given by the user are then used to find
more protoconcepts.

In this paper we want to use a similar approach to explore free double Boolean
algebras, which in general are not protoconcept algebras. Therefore, we have to
adjust slightly the notions and proofs introduced in [Vo04] to the exploration
of an arbitrary double Boolean algebra Dg generated by elements g1, . . . , gn in
an underlying double Boolean algebra Du. Here we still assume the existence
of a domain expert that answers the questions generated by the algorithm. In
Section 4 algorithms are developed that find the answers automatically for the
case of free double Boolean algebras.

In this section we will always consider a finite set {g1, . . . gn} of generators and
a set of variables X := {x1, . . . xn} of equal cardinality. We set −→g := (g1, . . . gn).

Definition 8. For a set X of variables and sets of terms S ⊆ T�(X) and T ⊆
T�(X) we say that:

1. The pair (A, B) ∈ P(S)×P(S) is a �-sequent over S if A ∩B = ∅.
2. Dually, the pair (A, B) ∈ P(T )×P(T ) is a �-sequent over T if A∩B = ∅,
3. A �-sequent over S (�-sequent over T ) is full iff A ∪B = S (A ∪B = T ).

On sequents of the same type we define an order by (A1, B1) ≤ (A2, B2) :⇔
A1 ⊆ A2 and B1 ⊆ B2.

To shorten notation, for �-sequents (A, B), we set

m(A, B) := ((�A) � (¬�B))

and, dually for �-sequents (A, B),

j(A, B) := ((��A) � (
⊔

B)).

In the sense of Definition 4, we denote the evaluation of a term t in the algebra
Du assigning to every variable xi the generator gi with (t)Du(−→g ). Note that,
for n generators g1, . . . gn of Dg, X := {x1, . . . , xn} and a �-sequent (A, B) over
T ⊆ T�(X) we have

(�A)Du(−→g ) 	 (�B)Du(−→g )⇔ m(A, B)Du(−→g ) = ⊥,

and, dually for a �-sequent (A, B) over S ⊆ T�(X), we have
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(�A)Du(−→g ) 	 (
⊔

B)Du(−→g )⇔ j(A, B)Du(−→g ) = �.

The exploration algorithm uses that for i ∈ N the set Bi
� :={p ∈ Dg | ∃t ∈ T i

�(X).
p=(t)Du(−→g )} is the universe of a finite subalgebra Bi

� :=(Bi
�,�,�,¬,⊥,�) of the

Boolean algebra Dg�. Dually, Bi
� := {p ∈ Dg | ∃t ∈ T i

�(X).p = (t)Du(−→g )} is
the universe of a finite subalgebraBi

� := (Bi
�,�,�,�,�,�) of the Boolean algebra

Dg� (cp. Corollary 2). In the i-th iteration, the exploration algorithm generates
sets Si� and Si� of sequents that describe the atoms resp. coatoms of Bi� resp. Bi�.
The algorithm has four steps:

Exploration algorithm

1. For n generators we take X := {x1, . . . xn} as set of variables and set S̃1
� :

{x1�, x2�, . . . xn�}, S̃1
� := {x1�, x2�, . . . xn�} and S0

� := S0
� := ∅.

2. (a) For i ≥ 1 we determine the set

Si
� := {(A, B) | (A, B) is a full �-sequent over S̃i

� and j(A, B)Du(−→g ) �= �}
in interaction with the user.
(b) Dually, we determine for i ≥ 1 the set

Si
� := {(A, B) | (A, B) is a full �-sequent over S̃i

� and m(A, B)Du(−→g ) �= ⊥}.
3. We set Gi := {(m(A, B))Du(−→g ) | (A, B) ∈ Si

�}, Mi := {(j(A, B))Du(−→g ) |
(A, B) ∈ Si

�} and Ki := (Gi, Mi,	) where we determine the relation 	 with
the aid of the expert.

4. We stop if |Si−1
� | = |Si

�| and |Si−1
� | = |Si

�|, otherwise we set S̃i+1
� := S̃i

� ∪
{(j(A, B)� j(A, B) | (A, B) ∈ Si�} and S̃i+1

� := S̃i� ∪ {(m(A, B)�m(A, B) |
(A, B) ∈ Si

�} and continue with 2).

The rest of this section is used to prove that the sets Si� and Si� of sequents
found by th exploration algorithm indeed describe the atoms resp. coatoms of
Bi� resp. Bi�. This follows from Theorem 4 which states that every element a of
the pure double Boolean Dg p that can be generated as a = tDu(−→g ) with k(t) ≤ i
may be represented as a set of objects or attributes of the context Ki generated
in the i-th iteration of the exploration algorithm. In the next section, this allows
us to map these generated elements to semiconcepts of Ki.

Proposition 2. 1) Let i ≥ 1 and let (A1, B1), (A2, B2) ∈ Si� with (A1, B1) �=
(A2, B2). Then

(m(A1, B1) �m(A2, B2))Du(−→g ) = ⊥.

2)Dually, if (A1, B1), (A2, B2) ∈ Si� with (A1, B1) �= (A2, B2) then

(j(A1, B1) � j(A2, B2))Du(−→g ) = �.

Proof. 1) From (A1, B1) �= (A2, B2) it follows A1 �= A2 since the sequents are
full. Thus there is either a t ∈ S̃i� with t ∈ A1, t �∈ A2 or vice versa. We assume
w.l.o.g. the first case. Then
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m(A1, B1) �m(A2, B2) = ((�A1) � (¬�B1)) � ((�A2) � (¬�B2))

≈ ((�(A1 \ {t})) � (¬�B1) � t)

�((�A2) � (¬�(B2 \ {t})) � ¬t)
≈ (�(A1 \ {t})) � (¬�B1) � (�A2)

�(¬�(B2 \ {t})) � (t � ¬t)
≈ ⊥.

2) Follows dually. �

The maps m and j assigning terms to sequents extend to sets of sequents: For a
set A of �-sequents over a given set of terms we define

m(A) := {m(A, B) ∈ T�(X) | (A, B) ∈ A}

and, dually for a set B of �-sequents over a given set of terms we define

j(B) := {j(A, B) ∈ T�(X) | (A, B) ∈ B}.

Corollary 1. 1) Let i ≥ 1 and A1,A2 ⊆ Si
�. Then

(�m(A1) ��m(A2))Du(−→g ) = (�m(A1 ∩ A2))Du(−→g ).

2) Dually, if A1,A2 ⊆ Si
�. Then

(� j(A1) �� j(A2))Du(−→g ) = (� j(A1 ∩ A2))Du(−→g ).

Lemma 3. 1) Let (A, B) be a �-sequent over a finite set S ⊆ T�(X). Then

j(A, B)Du(−→g ) = (�{j(C, D) | (C, D) is a full � −sequent over S with
j(C, D)Du(−→g ) �= � and (A, B) ≤ (C, D)})Du(−→g ).

2) Dually, let (A, B) be a �-sequent over a set S ⊆ T�(X). Then

m(A, B)Du(−→g ) = (�{m(C, D) | (C, D) is a full � −sequent over S with
m(C, D)Du(−→g ) �= ⊥ and (A, B) ≤ (C, D)})Du(−→g ).

Proof. 1) Note that

� {j(C, D) | (C, D) is a full � −sequent over S with j(C, D)Du(−→g ) �= �
and (A, B) ≤ (C, D)}Du(−→g )

=� {j(C, D) | (C, D) is a full �−sequent over S and (A, B) ≤ (C, D)}Du(−→g )

since ��(a� a) ≈ (a� a). For every t ∈ S \ (A∪B) and for every full �-sequent
(C, D) over S \ {t}, the sequents (C∪{t}, D) and (C, D∪{t}) are full �-sequents
over S and every full �-sequent over S is of that form. From
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j(C ∪ {t}, D)�j(C, D ∪ {t}) = (��(C ∪ {t}) �
⊔

D)�(��C �
⊔

(D ∪ {t}))
≈ (��C �

⊔
D � �t)�(��C �

⊔
D � t)

≈ ((��C �
⊔

D � �t)�(��C �
⊔

D))

�((��C �
⊔

D � �t)�t)

it follows with

(��C �
⊔

D � �t)�(��C �
⊔

D) ≈ ��C �
⊔

D

and (��C�⊔
D��t)�t ≈ (��C�⊔

D)�t that j(C∪{t}, D)�j(C, D∪{t}) ≈
j(C, D). Thus

�{j(C, D) | (C, D) is a full � −sequent over S and (A, B) ≤ (C, D)}
≈�{j(C, D) | (C, D) is a full �−sequent over S \ {t} and (A, B) ≤ (C, D)}.
2) follows dually. �

Lemma 4. 1) Let t ∈ S̃i�. Then

(t�)Du(−→g ) = (�{j(A, B) | (A, B) ∈ Si
� and t ∈ B})Du(−→g )

and
(�t�)Du(−→g ) = (�{j(A, B) | (A, B) ∈ Si

� and t ∈ A})Du(−→g )

2) Dually, let t ∈ S̃i
�. Then

(t�)Du(−→g ) = (�{m(A, B) | (A, B) ∈ Si
� and t ∈ A})Du(−→g )

and
(¬t�) = (�{m(A, B) | (A, B) ∈ Si

� and t ∈ B})Du(−→g )

Proof. This is a consequence of Lemma 3. For 1) we have that (t� t) ≈ j(∅, {t})
and thus

(t�)Du(−→g ) = (�{j(A, B) | (A, B) ∈ Si
� and (∅, {t}) ≤ (A, B)})Du(−→g )

= (�{j(A, B) | (A, B) ∈ Si
� and t ∈ B})Du(−→g ).

Analogously it follows from (�t�) ≈ j({t}, ∅) that (�t�))Du(−→g ) = (�{j(A, B) |
(A, B) ∈ Si

� and t ∈ A})Du(−→g ). Dually we obtain 2). �

Lemma 5. Let i ≥ 1, A ⊆ Si
� and B ⊆ Si

�. Then

(¬�m(A))Du(−→g ) = (�m(Si
� \ A))Du(−→g ).

and
(�� j(B))Du(−→g ) = (� j(Si

� \ B))Du(−→g ).
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Proof. From Corollary 1 we obtain immediately

(�m(A))Du(−→g ) � (�m(Si
� \ A))Du(−→g ) = (�m(A) ��m(Si

� \ A))Du(−→g )

= (� ∅)Du(−→g ) = ⊥.

Moreover, Lemma 3 yields

(�m(A))Du(−→g )�(�(Si
� \ A))Du(−→g ) = (�m(Si

�))Du(−→g )

= (�m({(A, B) \ (A, B) is a full �-sequent
over S̃i

� and (∅, ∅) ≤ (A, B)}))Du(−→g )

= (�∅� ¬� ∅)Du(−→g )
= �,

thus (�m(Si� \ A))Du(−→g ) is the negation of (�m(A))Du (−→g ) in the Boolean
algebra Pu�. Dually we obtain (�� j(B))Du(−→g ) = (� j(Si

� \ B))Du(−→g ). �

Lemma 6. For every set A ⊆ Si
� exists a set A∗ ⊆ Si+1

� such that

(�m(A))Du(−→g ) = (�m(A∗))Du(−→g ).

Dually, for B ⊆ Si
� there exists a set B∗ ⊆ Si+1

� such that

(� j(B))Du(−→g ) = (� j(B∗))Du(−→g ).

Proof. This follows from S̃i� ⊆ S̃i+1
� resp. S̃i� ⊆ S̃i+1

� and Lemma 3: We find
that every �-sequent over S̃i

� is a �-sequent over S̃i+1
� and thus

(�m(A))Du(−→g ) = (�{m(C, D) | (C, D) is a full � -sequent over S̃i+1
�

and (A, B) ≤ (C, D) for some (A, B) ∈ A})Du(−→g ).

Dually, the second claim is obtained. �

Proposition 3. 1) Let t ∈ T i
�(X) and A ⊆ Si

� with tDu(−→g )=(�m(A))Du(−→g ).
Then there exists a subset B ⊆ Si+1

� such that (t � t)Du(−→g ) = (� j(B))Du(−→g ).
2) Dually, let t ∈ T i�(X) and A ⊆ Si� with tDu(−→g ) = (� j(A))Du(−→g ). Then
there exists a subset B ⊆ Si+1

� such that (t � t)Du(−→g ) = (�m(B))Du(−→g ).

Proof. 1) Since for elements a, b ∈ Du� holds (a�b) � (a�b) = a � b (cf.[Vo03]),
it follows from tDu(−→g ) = (�m(A))Du(−→g ) that

(t � t)Du(−→g ) =
⊔

({m(A, B) | (A, B) ∈ A})Du(−→g )

=
⊔

({m(A, B) �m(A, B) | (A, B) ∈ A})Du(−→g ).

Since (m(A, B) �m(A, B)) ∈ S̃i+1
� for (A, B) ∈ Si

� ⊇ A, Lemma 3 yields

(m(A, B) �m(A, B))Du(−→g ) = j(∅, {(m(A, B) �m(A, B))})Du(−→g )

=�{j(C, D) | (C, D) ∈ Si+1
� and (m(A, B))� ∈ D}.



254 B. Vormbrock

We conclude from Corollary 1 that

(t � t)Du(−→g ) = (
⊔

(A,B)∈A

�{j(C, D) | (C, D) ∈ Si+1
� and

(m(A, B) �m(A, B)) ∈ D})Du(−→g )

= (�{j(C, D) | (C, D) ∈ Si+1
� and (m(A, B) �m(A, B)) ∈ D for

every (A, B) ∈ A})Du(−→g ).

2) follows dually. �

The following theorem is the main result of this section. It assigns to every term
t ∈ T i

� a subset At of Si
� such that the evaluation of t and�m(At) in Du yield

the same element of Dg. If we say that an element a of Dg is generated in i steps
from g1, . . . gn if there exists a term t with k(t) ≤ i such that a = (t)Du(−→g ) then
Theorem 4 ensures that every element of Dg� generated in i steps from g1, . . . gn

is obtained from Si
�. Dually, every element of Dg� generated in i steps from

g1, . . . gn is obtained from Si�. This yields the desired Corollary 2. Moreover, in
the next section we obtain for the case of free double Boolean algebra a map of
equivalence classes of T i(X) to semiconcepts of Ki and show that P(Ki) is a
counterexample to all invalid term identities s ∼ t for k(s), k(t) < i.

Theorem 4. Let t ∈ T i
�(X). We set

At := {(A, B) ∈ Si
� | m(A, B)Du(−→g ) 	 tDu(−→g )}.

Then tDu(−→g ) = (�m(At))Du(−→g ). Dually, for t ∈ T i�(X) we set

At := {(A, B) ∈ Si
� | j(A, B)Du(−→g ) � tDu(−→g )}.

Then tDu(−→g ) = (� j(At))Du(−→g ).

Proof. First, we show the existence of sets A ⊆ Si
� and B ⊆ Si

� with tDu(−→g ) =
(�m(A))Du(−→g ) resp. tDu(−→g ) = (� j(B))Du(−→g ) through induction over i: For
i = 1, t ∈ T 1

� (X), t is generated from ⊥, x1, . . . , xn by applying the operations �
and ¬. Since s1 � s2 ≈ (s1 � s1)� (s2 � s2) and ¬s1 ≈ ¬(s1 � s1) we may replace
any occurence of xj by xj�. For each of these generators g we find a set A ⊆ G1

such that g = (�m(A))Du(−→g ): We set A := ∅ for g = ⊥, and for g = (xj�) for
some j ∈ {1, . . . , n} Lemma 4 yields the corresponding set A.

Moreover, if we have s, t ∈ T 1� (X) and sets As, At ⊆ G1 with sDu(−→g ) =
(�As)Du(−→g ) and tDu(−→g ) = (�At)Du(−→g ) then Lemma 5 and Corollary 1
yield sets B, C ⊆ G1 with (¬s)Du(−→g ) = (�m(B))Du(−→g ) and (s � t)Du(−→g ) =
(�C)Du(−→g ). Thus we find for every t ∈ T 1

� (X) a subset of G1 with the desired
property. Analogously we conclude that there is a set A ⊆ M1 for every t ∈ T 1�
with tDu(−→g ) = (� j(A))Du(−→g ).

To conclude from i to i+1 let t ∈ T i+1
� (X). Then t is obtained from subterms

t1, . . . , tm ∈ T i(X) by applying the operations � and ¬. Again we may replace
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each of these subterms tj �∈ T i
� by t′j := (tj � tj). By assumption we find a set

Aj ⊆ Si
� with (tj)Du(−→g ) = (�m(Aj))Du(−→g ) for every subterm tj ∈ T i

�(X) and
thus by Lemma 6 we also find a set A′

j ⊆ Si+1
� with tDu

j (−→g ) = (�A′
j)Du(−→g ).

Likewise we obtain sets Aj ⊆ Si
� with (tj)Du(−→g ) = (� j(Aj))Du(−→g ) for every

subterm tj ∈ T i
�. Proposition 3 then yields a set A′

j ⊆ Si+1
� with (t′j)Du(−→g ) =

(�m(A′
j))Du(−→g ). If tj ∈ X or tj = ⊥ then we may again replace tj by t′j as

above and since i ≥ 1, tj ∈ T i�(X) the first case applies. If tj = �, then tj ≈ ��
� ∈ T 1

� (X). Thus, replacing � by ��� leads back to the second case. As before,
we find the desired subset A ⊆ Si+1

� by intersecting and taking complements of
the respective sets existing for the subterms t1, . . . , tm. Analogously, we obtain
a set A ⊆ Si+1

� with tDu(−→g ) = (� j(A))Du(−→g ) for every t ∈ T i+1
� .

Finally, we show that if tDu(−→g ) = (�m(A))Du(−→g ), A ⊆ Si
�, then A = At.

Since A may contain only sequents (A, B) ∈ Si� with (m(A, B))Du(−→g ) 	 tDu(−→g )
we obtain immediately A ⊆ At and thus (�m(A))Du(−→g ) 	 (�m(At))Du(−→g )=
tDu(−→g ). If (C, D) ∈ At \A it follows from Proposition 2 that

(m(C, D) � (�m(A)))Du (−→g ) = (�{m(A, B) �m(C, D) | (A, B) ∈ A})Du(−→g )

= (�⊥)Du(−→g ) = ⊥.

Thus (m(C, D))Du(−→g ) �	 (�m(A))Du(−→g ) and therefore

(�m(A))Du(−→g ) � (�A ∪ {(C, D)})Du(−→g ) 	 (�m(At))Du(−→g ) = tDu(−→g )

in contradiction to the assumption tDu(−→g ) = (�m(A))Du(−→g ). Dually, we ob-
tain the result for A ⊆ Si� and tDu(−→g ) = (� j(A))Du(−→g ). �

Corollary 2. For i ∈ N we set

Bi
� := {p ∈ Dg | ∃t ∈ T i

�(X).(t)Du(−→g ) = p}
and

Bi
� := {p ∈ Dg | ∃t ∈ T i

�(X).(t)Du(−→g ) = p}.
Then Bi

� := (Bi
�,�,�,¬,⊥,�) is a finite subalgebra of Dg� and, dually Bi

� :=
(Bi

�,�,�,�,�,�) is a finite subalgebra of Dg�. Moreover, Gi is the set of atoms
of Bi

� and Mi is the set of coatoms of Bi
�.

Proof. Obviously, for every i the set Si� consists of full �-sequents over a finite
set, hence Si

� is finite. Theorem 4 states that every element of Bi
� is obtained

from a disjunction of terms in Si
�, thus Bi

� is finite. It is evident that Bi
� is closed

under the operations �, � and ¬. From k(⊥) = 1 and � ≈ ¬⊥ follows that ⊥,
� ∈ Bi

� for every i, hence Bi
� is a finite subalgebra of Dg�. Dually we obtain

that Bi
� is a finite subalgebra of Dg�.

As for every �-sequent (A, B) ∈ Si
� the complexity of the corresponding term

k(m(A, B)) equals i, we find that Gi, defined in the exploration algorithm as
Gi := {(m(A, B)Du(−→g ) | (A, B) ∈ Si

�}, is a subset of Bi
�. Proposition 2 yields
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a�b = ⊥ for a, b ∈ Gi and from Theorem 4 we conclude that p =�{a ∈ Gi | a 	
p} for every p ∈ Bi

�. Thus Gi is the set of atoms of Bi
�. Dually we obtain that Mi,

defined in the exploration algorithm as Mi := {(j(A, B)Du(−→g ) | (A, B) ∈ Si�},
is the set of coatoms of Bi

�. �

From the Basic Theorem on Semiconcept Algebras we obtain immediately:

Corollary 3. If the algorithm stops after i iterations, then H(Ki) is isomorphic
to the pure subalgebra Dgp of Du.

3 Exploring Free Double Boolean Algebras

As we have seen, the free double Boolean algebras with one or more genera-
tors are infinite. Thus, the described exploration algorithm will not terminate
when exploring such a free algebra. Nevertheless, we gain insight from the Ki

constructed during the exploration process as will be explained in this section.
For a given (finite) set of variables X we define Ki(X) to be the context

Ki obtained when exploring the free double Boolean algebra D(X). Theorem 4
motivates the following map:

Proposition 4. Let X := {x1, . . . xn} be a set of variables and let Θi be the
restriction of the term equivalence ≈ to T i(X)× T i(X). Then

φi(t) := ({m(A, B) | (A, B) ∈ Si
� and m(A, B) 	 t},

{j(A, B) | (A, B) ∈ Si
� and j(A, B) � t})

defines a map φi : T i(X)/Θi → P(Ki(X)).

Proof. For any term t ∈ T (X) we find that tD(X)(x1, . . . , xn) = t, thus φi assigns
to each class of terms subsets of the object set and the attribute set of Ki(X).
For s ∈ t obviously holds φi(s) = φi(t). In order to show that for t ∈ T i(X) the
image φi(t) is a protoconcept of Ki(X) we distinguish three cases:
1) t ∈ T i

�(X). We set (At, Bt) := φi(t). Then Theorem 4 yields t = �At and
for j(C, D) ∈ Bt we obtain:

j(C, D) ∈ Bt ⇔ t 	 j(C, D)

⇔�At 	 j(C, D)
⇔ a 	 j(C, D) for every a ∈ At

⇔ j(C, D) ∈ A′
t.

Thus Bt = A′
t and φi maps �-semiconcepts of D(X) to �-semiconcepts of

P(Ki(X)).
2) t ∈ T i�(X). We obtain analogously that φi maps �-semiconcepts of D(X) to
�-semiconcepts of P(Ki(X)).
3) t = xj for some 1 ≤ j ≤ n. Again we set (At, Bt) := φi(t) and need to
show A′

t = B′′
t . First, note that At ⊆ B′

t and, conversely, Bt ⊆ A′
t as from
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m(A, B) ∈ At and j(C, D) ∈ Bt it follows that m(A, B) 	 t 	 j(C, D) and thus
m(A, B) I j(C, D) in Ki(X). This yields B′′

t ⊆ A′
t and A′′

t ⊆ B′
t.

Now assume j(C, D) ∈ A′
t \ B′′

t . Then we find m(A, B) ∈ B′
t \ At such that

m(A, B) �	 j(C, D). But since xj� =�Bt we obtain from m(A, B) ∈ B′
t that

m(A, B) 	 xj� and from m(A, B) ∈ T�(X) it follows that m(A, B) 	 (xj�)� =
(xj�)�. Likewise we find for j(C, D) ∈ A′

t that (xj�)� 	 j(C, D) and there-
fore m(A, B) 	 (xj�)� 	 j(C, D) in contradiction to our assumption. Thus
B′′

t = A′
t. �

Proposition 5. 1) The restriction φ�i of φi to T i�(X)/Θi is an isomorphism
between the Boolean algebras T i

�(X)/Θi and H�(Ki(X)).
2) Dually, the restriction φ�i of φi to T i

�(X)/Θi is an isomorphism between the
Boolean algebras T i�(X)/Θi and H�(Ki(X)).

Proof. This follows immediately from Corollary 2 and the definition of φi. �

Proposition 6 shows that the φi respect to a certain degree the operations of
double Boolean algebras. This is essential for the proof of Theorem 5.

Proposition 6. Let s, t ∈ T i(X). Then

1. φi(s � t) = φi(s) � φi(t) if k(s � t) ≤ i.
2. φi(s � t) = φi(s) � φi(t) if k(s � t) ≤ i.
3. φi(¬t) = ¬φi(t) if k(¬t) ≤ i.
4. φi(�t) = �φi(t) if k(�t) ≤ i.

Moreover, φi(�) = � and φi(⊥) = ⊥.

Proof. We show that for any term t with k(t � t) ≤ i holds φi(t) � φi(t) =
φi(t � t): Let (A, B) := φi(t). For (A, B) ∈ Si� we have m(A, B)D(X)(�x) 	 t ⇔
m(A, B) 	 t � t. Since φi maps elements of T i

�(X) to �-semiconcepts of Ki(X),
we obtain φi(t � t) = (A, A′) = φi(t) � φi(t). Dually, we obtain for any term
s with k(s � s) ≤ i that φi(s � s) = φi(s) � φi(s). This yields together with
Proposition 5 the statement. �

Now we have the means to prove the main result of this paper. Two terms s, t with
k(s), k(t) < i are equivalent if and only if P(Ki(X)) is not a counterexample.

Theorem 5. For s, t ∈ T i(X) the following conditions are equivalent:

1. s ≈ t
2. φi+1(s) = φi+1(t)
3. sP(Ki+1(X))(φi+1(x1), . . . φi+1(xn)) = tP(Ki+1(X))(φi+1(x1), . . . φi+1(xn)).

Proof. 1)⇔ 2): For s, t ∈ T i
�(X) (resp. s, t ∈ T i

�(X)) Proposition 5 and T i
�(X) ⊆

T i+1
� (X) (resp. T i

�(X) ⊆ T i+1
� (X)) yield s ≈ t ⇔ φi(s) = φi(t) ⇔ φi+1(s) =

φi+1(t).
Now assume s ∈ T i

�(X), t ∈ T i
�(X). If s ≈ t we obtain immediately from the

definition of φi+1 that φi+1(s) = φi+1(t). If s �≈ t then s �= t � t or s � s �= t
(otherwise s 	 t and t 	 s which implies s = t since 	 is an order on Dp(X)).
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In the first case, s �= t�, Proposition 5 yields φ�i+1(s) �= φ�i+1(t�) and thus

{m(A, B) | (A, B) ∈ Si+1
� and m(A, B) 	 s}

�= {m(A, B) | (A, B) ∈ Si+1
� and m(A, B) 	 t � t}.

Since for (A, B) ∈ Si+1
� we have m(A, B) 	 t � t ⇔ m(A, B) 	 t we obtain

φi+1(s) �= φi+1(t). The second case is shown dually.
In the case s ∈ X , s = xj for some 1 ≤ j ≤ n, we set (A, B) := φi+1(xj).

Note that φi+1(xj�) = (A, A′) and φi+1(xj�) = (B′, B). If t ∈ X , t �= s, then
xk� �= xj� in D(X) and Proposition 5 yield that φ1(t�) �= φ1(s�) and thus
φ1(t) �= φ1(s). This extends to φi for any i.

For the case t �∈ X , s ∈ X we show that φk(s) ∈ P(Kk(X)) \ H(Kk(X)) for
k ≥ 2. Since φk maps classes of terms of T i

�(X) to �-semiconcepts and classes of
terms of T i

�(X) to �-semiconcepts this implies φk(s) �= φk(t). In order to show
φk(s) ∈ P(Kk(X)) \ H(Kk(X)) note that for k ≥ 2 we find a set S ⊆ Mk with
� j(S) = xj��. Moreover, since sj� 	 xj��, the set {j(A, B) | (A, B) ∈ S}
is contained in A′. It is easy to check that xj�� and xj are incomparable in
D(X) and therefore there exists a sequent (A, B) ∈ S such that j(A, B) is not
contained in B. Hence φk(xj) is not of the form (A, A′).

Dually we obtain, that φk(xj) is not of the form (B′, B), thus φk(xj) is not a
semiconcept of Kk(X).

The equivalence 2) ⇔ 3) follows directly from Proposition 6. �

If we know the Ki(X) then Theorem 5 yields an easy criterion to decide whether
two terms are equivalent since the φi(xj) are computed easily:

φi(xj) = ({m(A, B) | (A, B) ∈ Si
� and xj� ∈ A},

{j(A, B) | (A, B) ∈ Si
� and xj� ∈ B})

Of course, the main problem remains to find the contexts Ki(X). But these
results already allow to derive an upper bound for the size of a minimal coun-
terexample to an identity s = t of terms, if there exists one: For a given finite
set of variables X with cardinality |X | =: n, we obtain in the first iteration
of the exploration not more than 2n full �-sequents and the same amount of
full �-sequents. If at the end of the i-th iteration we have |Si�| = |Si�| = x,
then we cannot generate more than x2x full �-sequents (and the same number
of �-sequents) in the next step. This motivates the inductive definition of the
following series:

Definition 9. For x ∈ N we define inductively

ax
1 := 2x

ax
n+1 := ax

n2ax
n

Corollary 4. If X is a finite set of variables with |X | = n and s, t ∈ T (X),
s �≈ t with k(s), k(t) ≤ m, then there exists a context K := (G, M, I) with
|G| = |M | ≤ an

m+1 such that sP(K) �= tP(K).

This corollary gives only a very weak upper bound for the size of the Ki(X) as
Figure 4 shows.
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Number of value of |Gi| of
i variables n := |X| an

i Ki(X) := (Gi, Mi, �)

1 1 2 2

2 1 8 6

3 1 2048 10

1 2 4 4

2 2 64 26

Fig. 4. Comparison of the upper bounds given in Corollary 4 and the sizes of the object
sets of Ki(X)

4 Automated Generation of Ki(X)

In this section, the problem of stepwise generation of the contexts Ki(X) is
attacked. If the context Ki(X) is known then the first task is to find the sets Si+1

�
and Si+1

� which yield the object and the attribute set of the context Ki+1(X).
This problem is dealt with in part 4.1. Once the object and the attribute set
are generated, the next step is to determine the incidence relation 	 which will
be treated in part 4.2. In both cases, our strategy is to reduce the problem to a
relativey small number of possibilities which may then be checked automatically.

4.1 Generation of Si+1
� and Si+1

�

In order to construct the contexts Ki(X) stepwise, the contexts K1(X) are
needed as a starting point. They are described in the following proposition:

Proposition 7. Let X := {x1, . . . xn} be a set of variables and let (A, B) be a
full �-sequent over S̃1

� and (C, D) a full �-sequent over S̃1
�. Then m(A, B) �≈ ⊥

and j(C, D) �≈ � and

m(A, B) 	 j(C, D)⇔ ∃xj ∈ X : xj� ∈ A and xj� ∈ D.

Proof. It is well-known that l1 ∧ · · · ∧ ln �= 0 for li ∈ {xi,¬xi} holds in the
free Boolean algebra generated by X and, dually, l1 ∨ · · · ∨ ln �= 1 for li ∈
{xi,¬xi}. Since every Boolean algebra (B,∧,∨,¬, 1, 0) can be considered as a
double Boolean algebra (B,∧,∨,¬,¬, 1, 0), this yields l1 � · · · � ln �≈ ⊥ and
l1 � · · · � ln �≈ � in double Boolean algebras.

From the definition of m(A, B) and j(C, D) we obtain immediately

∃xj ∈ X : xj� ∈ A and xj� ∈ D⇒ m(A, B) 	 j(C, D).

Now, consider K := (G1, M1, I) where I is defined as

m(A, B) I j(C, D) :⇔ ∃xj ∈ X : xj� ∈ A and xj� ∈ D.

We will show that in this context K the equivalence holds which implies that it
is true in K1(X). We set

Axj := {m(A, B) ∈ G1 | xj� ∈ A}
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and
Bxj := {j(C, D) ∈M1 | xj� ∈ D}

and check that (Axj , Bxj ) is a protoconcept: Obviously Bxj ⊆ AI
xj

. If j(C, D) ∈
AI

xj
\Bxj then we find k �= j such that xk� ∈ D and xk� ∈ A for all m(A, B) ∈

Axj . This contradicts m({xj�}, S̃1� \ {xj�} ∈ Axj . Therefore, Bxj = AI
xj

and
(Axj , Bxj ) is a protoconcept of P(K).

Finally, we show

m(A, B)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) = ({m(A, B)}, {m(A, B)}I)

and

j(C, D)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) = ({j(C, D)}I , {j(C, D)})
for (A, B) ∈ S1

� and (C, D) ∈ S1
�:

m(A, B)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
=�{(Axj , Bxj ) | xj� ∈ A} � ¬�{(Axj , Bxj ) | xj� ∈ B}
= (

⋂{Axj | xj� ∈ A}, ⋂{Axj | xj� ∈ A}I)
�¬(

⋃{Axj | xj� ∈ B}, ⋂{Axj | xj� ∈ B}I)
= ({m(E, F) ∈ G1 | A ⊆ E} \ {m(E, F) ∈ G1 | E ∩B �= ∅},

({m(E, F) ∈ G1 | A ⊆ E} \ {m(E, F) ∈ G1 | E ∩B �= ∅})I)
= ({m(A, B)}, {m(A, B)}I).

Dually we obtain

j(C, D)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) = ({j(C, D)}I , {j(C, D)}).
If (m(A, B), j(C, D)) �∈ I in K then m(A, B)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) �	
j(C, D)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) and thus m(A, B) �	 j(C, D) inD(X). �

The following lemma describes the incidence relation in a special case. It is
needed in the proof of Theorem 6.

Lemma 7. Let (A, B) ∈ Si�, (C, D) ∈ Si� with m(A, B) �	 j(C, D). Then

1. m(A ∪ {j(C, D)�}, B) 	 j(C, D) and, if m(A, B ∪ {j(C, D)�}) �≈ ⊥ then
m(A, B ∪ {j(C, D)�}) �	 j(C, D).

2. Dually, m(A, B) 	 j(C, D ∪ {m(A, B)�}) and, if j(C∪{m(A, B)�}, D) �≈ �
then m(A, B) �	 j(C ∪ {m(A, B)�}, D).

Proof. 1) From

m(A ∪ {j(C, D))�}, B) = m(A, B) � j(C, D)�

it follows immediately

m(A ∪ {j(C, D)�}, B) 	 j(C, D).
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From
m(A, B ∪ {j(C, D)�}) ≈ m(A, B) � ¬j(C, D)�

we obtain
m(A, B ∪ {j(C, D)�}) 	 ¬j(C, D)�.

If m(A, B ∪ {j(C, D)�}) 	 j(C, D)� then

m(A, B ∪ {j(C, D)�}) 	 j(C, D)� � ¬j(C, D)� = ⊥.

2) follows dually. �

Now we have the means to prove the main result of this section. Theorem 6 shows
that for a full �-sequent (A, B) over S̃i+1 a counterexample to m(A, B) ≈ ⊥, if
there exists any, can be found in an appropiate extension of Ki(X).

Theorem 6. Let (A, B) ∈ Si
� and let

T := {j(C1, D1)�, . . . , j(Cm, Dm)�} ⊆ S̃i+1
�

be a family of terms such that m(A, B) �	 j(Cj , Dj) for 1 ≤ j ≤ m.
For subsets Y1, . . . , Yk of T with

m(A ∪ Yj , B ∪ (T \ Yj)) �≈ ⊥
and

�
1≤j≤k

m(A ∪ Yj , B ∪ (T \ Yj)) ≈ m(A, B)

we modify the object set Gi of Ki(X) by setting

G :={m(E, F) ∈ Gi | (E, F) �= (A, B)}∪{m(A ∪ Yj , B ∪ (T \ Yj)) | k=1, . . . , m}.
We define a new context K with this modified object set as K := (G, Mi,	) and
set

Axj := {m(E, F) ∈ G | xj� ∈ E},
Bxj := {j(E, F) ∈Mi | xj� ∈ F}.

Then

m(A ∪ Yj , B ∪ (T \ Yj))P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) �= (∅, Mi).

Proof. First we prove that (Axj , Bxj ) ∈ P(K) for every xj ∈ X . Note that, for
l ∈ 1, . . . , k, xj� ∈ A ∪ Yl ⇔ xj� ∈ A since xj� ∈ S̃1

�. Thus

m(A ∪ Yl, B ∪ (T \ Yl)) ∈ Axj ⇔ m(A ∪ Yh, B ∪ (T \ Yh)) ∈ Axj

for all h ∈ 1, . . . , k.
From xj� =�{m(E, F) ∈ Gi | xj� ∈ E} and�1≤l≤k m(A∪Yl, B∪(T \Yl)) ≈

m(A, B) we obtain�Axj = xj�. Likewise follows�xj = xj�, thus Axj I Bxj .
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In the case i = 1, we show that A′
xj

= Bxj : Assume j(E, F) ∈ A′
xj
\Bxj . Then

xj� �∈ F, but Proposition 7 yields the existence of xl �= xj with xl� ∈ G for all
m(G, H) ∈ Axj and xl� ∈ F in contradiction to m({xj�}, S̃1� \ {xj�}) ∈ Axj if
(A, B) �= ({xj�}, S̃1

� \ {xj}) or m(A ∪ Y1, B ∪ (T \ Y1)) ∈ Axj otherwise.
In the case i ≥ 2,

j(E, F) ∈ A′
xj
⇔�Axj = xj� 	 j(E, F)⇔ xj�� 	 j(E, F).

Moreover, since i ≥ 2 and k(xj��) = 2, Theorem 4 yields

�A′
xj

= xj�� = xj�� =�A′′
xj

.

Likewise we obtain�B′
xj

=xj�� and thus A′′
xj

=B′
xj

. We conclude (Axj , Bxj ) ∈
P(K).

In the next step we show for (E1, F1) ∈ Sj
� and (E2, F2) ∈ Sj

�, j ≤ i that

m(E1, F1)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= ({m(G, H) ∈ G | (G, H) ≥ (E1, F1)}, {m(G, H) ∈ G | (G, H) ≥ (E1, F1)}′)

and

j(E2, F2)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= ({j(G, H) ∈Mi | (G, H) ≥ (E2, F2)}′, {j(G, H) ∈Mi | (G, H) ≥ (E2, F2)})

by induction over j:
For j = 1 we have

m(E1, F1)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
=�{(Axj , A

′
xj

) | xj� ∈ E1} � ¬�{(Axj , A
′
xj

) | xj� ∈ F1}
= ({m((G, H) ∈ G | E1 ⊆ G}, {m((G, H) ∈ G | E1 ⊆ G}′)
�¬({m(G, H) ∈ G | G ∩ F1 �= ∅}, {m(G, H) ∈ G | G ∩ F1 �= ∅}′)

= ({m((G, H) ∈ G | E1 ⊆ G}, {m((G, H) ∈ G | E1 ⊆ G}′)
�({m(G, H) ∈ G | F1 ⊆ H}, {m(G, H) ∈ G | F1 ⊆ H}′)

= ({m(G, H) ∈ G | (G, H) ≥ (E1, F1)}, {m(G, H) ∈ G | (G, H) ≥ (E1, F1)}′).
Dually, we obtain

j(E2, F2)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= ({j(G, H) ∈Mi | (G, H) ≥ (E2, F2)}′, {j(G, H) ∈Mi | (G, H) ≥ (E2, F2)}).

In order to conclude from j to j + 1 for j + 1 ≤ i we set for (E1, F1) ∈ Sj+1
�

E∗
1 := E1 ∩ S̃j

� and F∗
1 := F1 ∩ S̃j

�.

Then
m(E1, F1) ≈ m(E∗

1, F
∗
1) ��(E1 \ E∗

1) � ¬�(F1 \ F∗
1)

and (E1 \ E∗
1) ∪ (F1 \ F∗

1) ⊆ S̃j+1
� \ S̃j

�. For j(G, H)� ∈ S̃j+1
� \ S̃j

� we have by
assumption
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j(G, H)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= ({j(I, J) ∈Mi | (I, J) ≥ (G, H)}′, {j(I, J) ∈Mi | (I, J) ≥ (G, H)})
=:(B′, B).

From k(j(G, H)) < k(j(G, H)�) ≤ i follows

m(I, J) ∈ B′ ⇔ m(I, J) 	�B = j(G, H)
⇔ m(I, J) 	 j(G, H)�

and by Lemma 7 this is equivalent to j(G, H)� ∈ I. Thus,

m(E1, F1)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= (m(E∗

1, F
∗
1) ��(E1 \ E∗

1) � ¬�(F1 \ F∗
1))P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))

= ({m(G, H) ∈ G | (G, H) ≥ (E∗
1, F

∗
1)}, {m(G, H) ∈ G | (G, H) ≥ (E∗

1, F
∗
1)}′)

��({m(G, H) ∈ G | j(I, J)� ∈ G for some j(I, J)� ∈ E1 \ E∗
1},

{m(G, H) ∈ G | j(I, J)� ∈ G for some j(I, J)� ∈ E1 \ E∗
1}′)

�¬�({m(G, H) ∈ G | j(I, J)� ∈ G for some j(I, J)� ∈ F1 \ F∗
1},

{m(G, H) ∈ G | j(I, J)� ∈ G for some j(I, J)� ∈ F1 \ F∗
1}′)

= ({m(G, H) ∈ G | (G, H) ≥ (E∗
1, F

∗
1)}, {m(G, H) ∈ G | (G, H) ≥ (E∗

1, F
∗
1)}′)

�({m(G, H) ∈ G | E1 \ E∗
1 ⊆ G}, {m(G, H) ∈ G | E1 \ E∗

1 ⊆ G}′)
�({m(G, H) ∈ G | F1 \ F∗

1 ⊆ H}, {m(G, H) ∈ G | F1 \ F∗
1 ⊆ H}′)

= ({m(G, H) ∈ G | (G, H) ≥ (E1, F1)}, {m(G, H) ∈ G | (G, H) ≥ (E1, F1)}′).
For j(E2, F2)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) a similar argument is used: Again,
we set E∗

2 := E2 ∩ S̃j
� and F∗

2 := F2 ∩ S̃j
�. For m(G, H)� ∈ S̃j+1

� \ S̃j
� we have by

assumption

m(G, H) = ({m(I, J) ∈ G | (I, J) ≥ (G, H))}, {m(I, J) ∈ G | (I, J) ≥ (G, H))}′)
=: (A, A′).

In order to conclude j(I, J) ∈ A′ ⇔ m(G, H)� ∈ J we use that

�
1≤j≤k

m(A ∪ Yj , B ∪ (T \ Yj) ≈ m(A, B) ∈ Gi

and that k(m(G, H)) = j ≤ i implies

(G, H) ≤ (A ∪ Yj , B ∪ (T \ Yj)⇔ (G, H) ≤ (A, B).

Then we continue as in the case of m(E1, F1)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) to
obtain

j(E2, F2)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn))
= ({j(G, H)∈Mi | (G, H)≥(E2, F2)}′, {j(G, H) ∈Mi | (G, H)≥ (E2, F2)}).

Finally, we show that m(A ∪ Yj , B∪ (T \ Yj)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) �=
(∅, Mi): Obviously, (A∪Yj , B∪(T \Yj) ≥ (A, B) and thus m(A ∪ Yj , B ∪ (T \ Yj))
is in the extent of m(A, B)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)). For j(Cl, Dl)� ∈ T
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we have j(Cl, Dl)
P(K)
� ((Ax1 , Bx1), . . . , (Axn , Bxn)) = ({j(Cl, Dl)}′, {j(Cl, Dl)})

and by Lemma 7

m(A ∪ Yj , B ∪ (T \ Yj)) 	 j(Cl, Dl) if j(Cl, Dl) ∈ Yj

and
m(A ∪ Yj , B ∪ (T \ Yj)) �	 j(Cl, Dl) if j(Cl, Dl) �∈ Yj .

Hence m(A ∪ Yj , B ∪ (T \ Yj)) is in the extent of
m(A ∪ Yj , B ∪ (T \ Yj)P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)). �

The following examples show, how Theorem 6 can be used:

Example 4. Fig. 5 depicts the context K1({x}). If we want to determine S2� then
Theorem 6 allows us to deal seperately with the �-sequents extending ({x�}, ∅)
and the �-sequents extending (∅, {x�}).

For ({x�}, ∅), which corresponds to the first line of the context in Fig. 5
we obtain immediately from x� 	 x� that m({x�}, {x�}) = x� � ¬(x�)� ≈
⊥. Thus, we only need to check m(A1, B1) := m({x�, (x�)�, (�x�)�}, ∅) and
m(A2, B2) := m({x�, (x�)�}, {(�x�)�}). If both are in S2

� then, by Theorem
6, the context depicted in Fig. 6 contains a counterexample to m(Ai, Bi) ≈ ⊥.
Indeed, with Ax = {1.1, 1.2} and Bx = {a} we obtain

m(A1, B1)P(K1.1)(Ax, Bx) = ({1.1}, {a, b})
m(A2, B2)P(K1.1)(Ax, Bx) = ({1.2}, {a}).

For (∅, {x�}), which corresponds to the second line of the context in Fig. 5,
four possible �-sequents have to be checked. Again, if they are all different from
⊥ then the context in Fig. 7 contains an example. Indeed, with Ax = {1} and
Bx = {a} we find

m({(x�)�, (�x�)�}, {x�})P(K1.2)(Ax, Bx) = ({2}, {a, b})
m({(x�)�}, {x�,�x�)�})P(K1.2)(Ax, Bx) = ({3}, {a})

m({(�x�)�}, {x�, (x�)�})P(K1.2)(Ax, Bx) = ({4}, {b})
m(∅, {x�, (x�)�, (�x�)�})P(K1.2)(Ax, Bx) = ({5}, ∅).

Thus, these four �-sequents are in S2
�. Duality yields

j({x�}, {(x�)�, (¬x�)�}) �≈ �
j({x�, (¬x�)�}, {(x�)�}) �≈ �
j({x�, (x�)�}, {(¬x�)�}) �≈ �
j({x�, (x�)�, (¬x�)�}, ∅) �≈ �.

Example 5. Fig. 8 depicts the context K2({x}). Consider the terms t1 := (¬x�)�
¬(x�)� � (�(x�)� (correspondig to the fourth line) and t2 := x� � (x�)� �
�(¬(x�))� (correspondig to the second column). In order to determine if t1 �
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x�

¬x�

x� x�K1({x})

Fig. 5. K1({x})

x� � ( x�)�

x� � ¬( x�)�

¬x�

x� x�

K1.1

1.1

1.2

2

a b

Fig. 6. The first extension of
K1({x})

1

2

3

4

5

x�

¬x� � (x�)�
�( (x�))�

¬x� � (x�)�
�¬( (x�))�

¬x� � ¬(x�)�
�( (x�))�

¬x� � ¬(x�)�

�¬( (x�))�

x� x�

a b

Fig. 7. The second extension of K1({x})

(t2)� �≈ ⊥ and t1 �¬(t2)� �≈ ⊥, we modify K2({x}) replacing object 4 with new
objects 4.1 and 4.2. 4.1 represents then t1�t2� and 4.2 represents t1�¬t2�. This
yields the context K2.1 as depicted in Fig. 9. We find

(t1 � (t2)�)P(K2.1)({1, 2}, {a, b}) = (∅, {a, b, c, d, e, f}) = ⊥
and

(t1 � ¬(t2)�)P(K2.1)({1, 2}, {a, b}) = ({4.1}, {a, c, d, e, f}) �= ⊥.

Then Theorem 6 yields t1 � (t2)� ≈ ⊥.

In general, Theorem 6 allows to use the following algorithm to determine all �-
sequents in Sm+1

� extending a �-sequent (A, B) ∈ Sm� if Sm� , Sm� and Km(X) :=
(Gm, Mm,	) are known.
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1

2

3

4

5

6

a b c d e f
K2({x})

Fig. 8. The context K2({x}). The abbreviated objects and attributes are explained
below.

object element of D({x})

1 x� � (x�)� � ( (x�))�

2 x� � (x�)� � ¬( (x�))�

3 ¬x� � (x�)� � ( (x�))�

4 ¬x� � ¬(x�)� � ( (x�))�

5 ¬x� � (x�)� � ¬( (x�))�

6 ¬x� � ¬(x�)� � ¬( (x�))�

attribute element of D({x})

a x� � (x�)� � (¬(x�))�

b x� � (x�)� � (¬(x�))�

c x� � (x�)� � (¬(x�))�

d x� � (x�)� � (¬(x�))�

e x� � (x�)� � (¬(x�))�

f x� � (x�)� � (¬(x�))�

Algorithm

1. Set i = 1, A := {j(C, D)� ∈ S̃m+1
� | m(A, B) �	 j(C, D)} and P1 :=

P(P(A)). Then every p ∈ P1 with p = {Y1, . . . , Yk} yields a set of pos-
sible extensions (A ∪ Y1, B ∪ (A \ Y1)), . . . , (A ∪ Yk, B ∪ (A \ Yk)) of (A, B).
Since m(A, B∪A) �≈ ⊥, we remove all p ∈ P1 with ∅ �∈ p and set T0 := {∅}.

2. Choose a pi ∈ Pi and set

G := (Gm \ {m(A, B)}) ∪ {m(A ∪ Yj , B ∪ (A \ Yj)) | Yj ∈ pi}.
On G×Mm an incidence relation I is defined as

I := {(g, m) ∈ G×Mm | g ∈ Gm and g 	 m}
∪{(m(A ∪ Yj , B ∪ (A \ Yj)), j(C, D)) ∈ G×Mm | j(C, D) ∈ Yj}.

Set K := (G, Mm, I).
3. For Yk ∈ p \ Ti−1 check if

m(A ∪ Yj , B ∪ (A \ Yj))P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) �= (∅, Mm).
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Set

Ti := Ti−1 ∪ {Yk ∈ p |
m(A ∪ Yj , B ∪ (A \ Yj))P(K) ((Ax1 , Bx1), . . . , (Axn , Bxn)) �= (∅, Mm)}.

4. Set Pi+1 := {q ∈ Pi | Ti ⊆ q and q �= pi}.
5. If Pi+1 = ∅ set T := Ti and stop. Otherwise increase i and continue with 2).

When the algorithm stops, the set {(A∪(S̃m+1
� \A)∪Yj , B∪(A\Yj) | Yj ∈ T }

is the set of all �-sequents in Sm+1
� extending (A, B). Although in theory the

set P1 containing all possibilities we have to check may grow rapidly (|P1| =
22|A|−1 ≤ 22|Sm� |−1), the examples given above give reason to hope that the
contexts Km(X) have many crosses and therefore that |A| is small compared to
the total number of rows and columns of Km(X).

4.2 Determination of �
Once we know the object and the attribute set of Ki+1(X), the incidence relation
needs to be found. A major part of this relation is obtained easily from:

1. If (A, B) ∈ Si+1
� , (C, D) ∈ Si+1

� and m(A ∩ S̃i�, B ∩ S̃i�) 	 j(C ∩ Si�, D ∩ Si�)
then m(A, B) 	 j(C, D), i.e. the incidence relation of Ki(X) has to be re-
spected by Ki+1(X).

2. If (A, B) ∈ Si+1
� , (C1, D1) ∈ Si

�, (C2, D2) ∈ Si+1
� with (C2, D2) ≥ (C1, D1)

and (j(C1, D1))� ∈ A then m(A, B) 	 j(C2, D2).
Dually, if (C, D) ∈ Si+1

� , (A1, B1) ∈ Si�, (A2, B2) ∈ Si+1
� with (A2, B2) ≥

(A1, B1) and (m(A1, B1))� ∈ D then m(A2, B2) 	 j(C, D).

1

2

3

4.1

4.2

5

6

a b c d e f
K2.1

Fig. 9. The extended context K2.1. The numbers and letters represent the same objects
and attributes as in Fig. 8 except for 4.1 and 4.2, which are explained in Example 5.
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We denote with Ĩ ⊆ Gi+1 ×Mi+1 the relation between the objects and at-
tributes of Ki+1(X) obtained from these rules.

A second helpful property of Ki+1(X) is its self-duality:

Lemma 8. For a finite set X of variables and i ∈ N the context Ki(X) is
isomorphic to its dual Ki(X)d := (Mi, Gi,�).

Proof. Let α : T (X) → T (X) map every term to its dual. Obviously (α, α) is
an isomorphism between Ki(X) and Ki(X)d. �

We will call every context K := (G, M, I) satisfying K ∼= K
d self-dual.

Finally, Prop. 6 yields that Ki+1 satisfies the following condition:

For m(A, B) ∈ Si+1
� , j(C, D) ∈ Si+1

� :
(R) m(A, B)P(Ki+1(X)) ((Ax1 , Bx1), . . . , (Axn , Bxn))=({m(A, B)}, {m(A, B)}′)

and
j(C, D)P(Ki+1(X)) ((Ax1 , Bx1), . . . , (Axn , Bxn)) = ({j(C, D)}′, {j(C, D)}).

Now the incidence relation of Ki+1(X) can be found as the smallest incidence
relation extending Ĩ and satisfying (R).

Proposition 8. Let K1 := (Gi+1, Mi+1, I1), . . . , Kk := (Gi+1, Mi+1, Ik) be all
self-dual contexts with an incidence relation extending Ĩ and satisfying (R). Then⋂

j=1,...,k Ij is the incidence relation of Ki+1(X).

Proof. We have already shown that the incidence relation of Ki+1(X) is equal
to one of the Ij . Assume (m(A, B), j(C, D)) �∈ Ij for some j. The Basic Theorem
on Protoconcept Algebras yields

m(A, B)P(Kj) ((Ax1 , Bx1), . . . , (Axn , Bxn))
�	 j(C, D)P(Kj) ((Ax1 , Bx1), . . . , (Axn , Bxn))

and thus m(A, B) �	 j(C, D) in D(X). �

Thus a combination of the exploration algorithm given in Section 2, the algo-
rithm in Section 4.1 and these results allow us to compute the contexts Ki(X)
automatically: For a given set of variables X := {x1, . . . , xn}, Proposition 7
yields immediately the sets S1

� and S1
� as well as the incidence relation of

K1(X) := (G1, M1,	) computed in the first iteration of the exploration algo-
rithm. In the following iterations of the exloration the algorithm given in Section
4.1 is used to determine the sets Si+1

� and Si+1
� in step 2. Proposition 8 yields

the incidence relation of Ki+1(X) in step 3.
For two terms s, t over X with complexity k(s), k(t) < m it follows from

Theorem 4 that s ≈ t if and only if
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sP(Km(X))(((Ax1 , Bx1), . . . , (Axn , Bxn)))
= tP(Km(X))(((Ax1 , Bx1), . . . , (Axn , Bxn)))

with

Axj := {m(A, B) ∈ Gi+1 | xj� ∈ A},
Bxj := {j(C, D) ∈Mi+1 | xj� ∈ D}.

Therefore, the combination of the exploration algorithm with the algorithm given
in Section 4.1 and Proposition 8 yields a solution of the word problem for free
double Boolean algebras.

5 Concluding Remarks

The solution of the word problem for free double Boolean algebras presented in
this paper constructs, if possible, a counterexample to a term identity s ∼ t for
terms over a set of variables X that depends only of the complexities k(s) and
k(t) of s, t and |X |. This allows to use the counterexample, once constructed, for
all terms with equal complexity over the same set of variables. If Ki(X) and the
protoconcepts (Axj , Bxj ) assigned to the variables xj are known, the terms may
be evaluated rapidly in P(Ki(X)). This, and the development of a solution in the
framework of double Boolean algebras, are the main differences to the solution
intended in [HLSW00], where 2-sorted and 3-sorted approaches are used.

Work related to the investigation of the generation process in double Boolean
algebras was published by M. Skorsky in 1989. In [Sk89] an earlier approach to
introduce negations on formal concepts led to an investigation of compositions
of Galois connections and dual Galois connections between ordered sets. For
a context K := (G, M, I) we obtain a Galois connection μ : P(G) → P(M),
ν : P(M)→ P(G) as μ(A) := A′ and ν(B) := B′. In semiconcept algebras these
maps correspond to a �→ a� for �-semiconcepts and b �→ b� for �-semiconcepts.
With the complementation operation X �→ Xc a dual Galois connection is
obtained as γ : P(G) → P(M), γ(A) := (μ(Ac))c and δ : P(M) → P(G),
δ(B) := (ν(Bc))c. For �-semiconcepts, the map γ corresponds to a �→ �¬a, for
�-semiconcepts, the map δ corresponds to b �→ ¬�b. Thus compositions of these
maps yield an example for the regular monoids studied in [Sk89].
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Abstract. The MacNeille completion of a poset (P, ≤) is the smallest
(up to isomorphism) complete poset containing (P, ≤) that preserves ex-
isting joins and existing meets. It is wellknown that the MacNeille com-
pletion of a Boolean algebra is a Boolean algebra. It is also wellknown
that the MacNeille completion of a distributive lattice is not always a
distributive lattice (see [Fu44]). The MacNeille completion even seems
to destroy many properties of the initial lattice (see [Ha93]). Weakly
dicomplemented lattices are bounded lattices equipped with two unary
operations satisfying the equations (1) to (3’) of Theorem 3. They gener-
alise Boolean algebras (see [Kw04]). The main result of this contribution
states that under chain conditions the MacNeille completion of a weakly
dicomplemented lattice is a weakly dicomplemented lattice. The needed
definitions are given in subsections 1.2 and 1.3.
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1 Introduction

1.1 Motivation

Concept algebras are concept lattices enriched by a weak negation and a weak
opposition. They should play for Boolean Concept Logic the rôle played by the
powerset algebras for Classical Propositional Logic. The class of weakly dicom-
plemented lattices is a variety defined by some equations valid in all concept
algebras. One important and still open problem in this topic is whether every
weakly dicomplemented lattice can be embedded into a concept algebra of a
suitable context (called concrete embedding problem in [Kw04, Section 1.4]).
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A promising step is the prime ideal theorem. Using this result on a weakly di-
complemented lattice (L, ∧, ∨,� ,� , 0, 1), a canonical context K

�
�(L) has been

constructed and a bounded lattice embedding ϕ : L → B(K�
�(L)) exhibited (see

Subsection 1.4), that satisfies

ϕ(x�) ≤ ϕ(x)� ≤ ϕ(x)� ≤ ϕ(x�)

where in A(K�
�(L)) the weak negation and weak opposition are also denoted

by � and � respectively. So the following question arises: does it make any
difference if L is assumed to be a complete lattice? To answer this question we
first examine the MacNeille completion L̃ of L, on which we extend the operations
� and �. Of course L̃ embeds into B(K�

�(L). Is this a weakly dicomplemented

lattice embedding of L into A(K
�
�(L))? Our aim is to prove that the MacNeille

completion L̃ of a weakly dicomplemented lattice L is a weakly dicomplemented
lattice and that L embeds into A(K�

�(L) iff L̃ embeds into A(K�
�(L). Section 2

presents preliminary results for the first claim. The second claim is still not
proved. Before that we recall some basic notions of Formal Concept Analysis in
Subsection 1.2 and introduce weakly dicomplemented lattices in Subsection 1.3.
The proofs of stated results can be found in [GW99] or [Kw04].

1.2 Formal Concept Analysis

Formal Concept Analysis is a mathematical field that aims to support human
thinking. It has been introduced by Rudolf Wille in the early 80ies, and is based
on the theory of lattices and ordered sets. It is started by formalizing the notions
of “concept” and “concept hierarchy”. The notion of concept is rather philosoph-
ical. A concept is considered to be determined by its extent and its intent. The
extent consists of all entities belonging to the concept and the intent is the set
of all common properties shared by all objects of the concept. The hierarchy on
concept states that “a concept is more general if it contains more entities”. For
this purpose the following notions were adopted.

Definition 1. A formal context is a triple (G, M, I) of sets such that I ⊆
G × M . The members of G are called objects and those of M attributes. If
(g, m) ∈ I the object g is said to have m as an attribute. For A ⊆ G and B ⊆ M ,
the derivation operation ′ is defined by

A′ := {m ∈ M | ∀g ∈ A gIm} and B′ := {g ∈ G | ∀m ∈ B gIm}.

A formal concept of (G, M, I) is a pair (A, B) with A ⊆ G and B ⊆ M such
that A′ = B and B′ = A. We call A the extent and B the intent of the concept
(A, B). The set of all formal concepts of (G, M, I) is denoted by B(G, M, I). For
concepts (A, B) and (C, D), we call (A, B) a subconcept of (C, D) provided that
A ⊆ C (which is equivalent to D ⊆ B). In this case, (C, D) is a superconcept
of (A, B) and we write (A, B) ≤ (C, D).

The pair (′,′ ) forms a Galois connection between the powersets of G and that of
M . The basic theorem on concept lattices says that:
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Theorem 1. [GW99, Thm. 3] Let (G, M, I) be a formal context. B(G, M, I) is
a complete lattice in which infimum and supremum are given by:

∧

t∈T

(At, Bt)=

(
⋂

t∈T

At,

(
⋃

t∈T

Bt

)′′)

and
∨

t∈T

(At, Bt)=

((
⋃

t∈T

At

)′′
,
⋂

t∈T

Bt

)

.

A complete lattice L is isomorphic to B(G, M, I) iff there are mappings γ̃ : G →
L and μ̃ : M → L such that γ̃(G) is supremum-dense in L, μ̃(M) is infimum-
dense in L and for all g ∈ G and m ∈ M

gIm ⇐⇒ γ̃(g) ≤ μ̃(m).

In particular L ∼= B(L, L, ≤).

B(G, M, I) is called the concept lattice of the context (G, M, I). A particu-
lar case is the context (P, P, ≤) where (P, ≤) is a poset. Its concept lattice is
(isomorphic to) the MacNeille completion of (P, ≤)). In fact

Theorem 2. [GW99, Thm. 4] For a poset (P, ≤) the map

ϕ : P → B(P, P, ≤)
x �→ (↓x, ↑x)

is an order embedding of (P, ≤) into B(P, P, ≤) preserving existing suprema and
infima. If ψ is another embedding of (P, ≤) into a complete lattice L, then there
is an order embedding λ of B(P, P, ≤) into L such that ψ = λ ◦ ϕ.

To formalize a negation on concepts, two unary operations are introduced: a
weak negation and a weak opposition. We refer to [Wi00] for more details and
similar operations encoding a negation.

1.3 Weakly Dicomplemented Lattices

Definition 2. Let K := (G, M, I) be a formal context. For a formal concept
(A, B) we define

its weak negation by (A, B)� :=
(
(G \ A)′′ , (G \ A)′

)

and its weak opposition by (A, B)� :=
(
(M \ B)′ , (M \ B)′′

)
.

A(K) :=
(
B (K) ; ∧, ∨,� ,� , 0, 1

)
is called the concept algebra of the context

K, where ∧ and ∨ denote the supremum and infimum operations of the concept
lattice.

Rudolf Wille showed that

Theorem 3 ([Wi00]). For each formal context K := (G, M, I), the following
properties hold in its concept algebra A (K):

(1) x�� ≤ x,
(2) x ≤ y =⇒ x� ≥ y�,
(3) (x ∧ y) ∨ (x ∧ y�) = x,

(1’) x�� ≥ x,
(2’) x ≤ y =⇒ x� ≥ y�,
(3’) (x ∨ y) ∧ (x ∨ y�) = x.
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Since we are interested in the equational theory (if there is one) of concept
algebras, we define abstract structures using the equations in Theorem 3. Then
we try to find whether these are enough to describe concept algebras; i.e., if each
equation valid in all concept algebras is also valid in these abstract structures
and vice versa.

Definition 3. A weakly dicomplemented lattice is an algebra
(L; ∧, ∨,� ,� , 0, 1) of type (2, 2, 1, 1, 0, 0) for which (L; ∧, ∨, 0, 1) is a bounded
lattice satisfying properties (1), (2), (3), (1′), (2′) and (3′) of Theorem 3. x� is
called a weak complement and x� a dual weak complement of x. The pair (�,� )
is called a weak dicomplementation.

All concept lattices are complete lattices. If we expect each weakly dicomple-
mented lattice to be (isomorphic to) a concept algebra, we should add the com-
pleteness property in Definition 3. However, being a complete lattice cannot be
expressed by means of equations.

1.4 Canonical Context

A context can be assigned canonically to each weakly dicomplemented lattice as
follows. Let L be a weakly dicomplemented lattice. A subset X of L is called pri-
mary filter (resp. primary ideal) if for all x ∈ L we have x ∈ X or x� ∈ X (resp.
x ∈ X or x� ∈ X). The prime ideal theorem holds for weakly dicomplemented
lattices namely,

for any filter F and any ideal I such that F ∩ I = ∅ there is a
primary filter G, a primary ideal J with F ⊆ G, I ⊆ J such that
G ∩ J = ∅. [Kw04, Lemma 2.2.1]

An immediate consequence is the existence of primary filters and primary ide-
als. We denote by Fpr(L) the set of primary filters of L and by Ipr(L) the
set of primary ideals of L. A relation Δ ⊆ Fpr(L) × Ipr(L) is defined by
FΔI : ⇐⇒ F ∩ I �= ∅. We call (Fpr(L), Ipr(L), Δ) the canonical context of
L and denote it by K

�
�(L). For x ∈ L, we set

Fx := {F ∈ Fpr(L) | x ∈ F} and Ix := {I ∈ Ipr(L) | x ∈ I}.

The map ϕ : x �→ (Fx, Ix) is a bounded lattice embedding of L into B(K�
�(L))

such that

ϕ(x�) ≤ ϕ(x)� ≤ ϕ(x)� ≤ ϕ(x�). [Kw04, Thm 2.2.4]

Is ϕ an embedding of L into A(K�
�(L))? This question is still open and is known

as the concrete representation problem for weakly dicomplemented lattices.

2 MacNeille Completion of Weakly Dicomplemented
Lattices

In this section we prove that in the MacNeille completion of a weakly dicomple-
mented lattice L, unary operations can be naturally defined to extend the ones
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existing on L. The first observation towards this definition is the more general
form of the De Morgan laws. For a subset X of L we set

X� := {x� | x ∈ X} and X� := {x� | x ∈ X}.

Lemma 1. Let L be a weakly dicomplemented lattice and X a subset of L. We
have

(i) (
∧

X)� =
∨

X�

and
(ii) (

∨
X)� =

∧
X�

Proof. (i) Note that

(
∧

∅)� = 1� = 0 =
∨

∅ =
∨

∅�.

The equality trivially holds for X = ∅. We consider X to be a nonempty subset
and set X := {xi | i ∈ I}. We have

(
∧

X)� ≥ x�
i for all i ∈ I, and hence (

∧
X)� ≥

∨
X�.

Now let t ≥ x�
i for all i ∈ I. Consequently t� ≤ x��

i ≤ xi for all i ∈ I holds
as well as t� ≤

∧
X . Therefore t ≥ t�� ≥ (

∧
X)� holds. Thus (

∧
X)� is the

lowest upper bound of X� i.e., (
∧

X)� =
∨

X�. The equality in (ii) is proved
dually. ��

We consider L, a weakly dicomplemented lattice and B(L, L, ≤), its MacNeille
completion. Since L is

∨
-dense and

∧
-dense in B(L, L, ≤), we take advantage of

Lemma 1 (i) to define the weak complement and of Lemma 1 (ii) to define the
dual weak complement of each x ∈ B(L, L, ≤). Before that, we have to prove
that the definition does not depend on the representation. That is what Lemma 2
says.

Lemma 2. Let (L, ∧, ∨,� ,� , 0, 1) be a weakly dicomplemented lattice. For any
subset X of L we denote by ub(X) (resp. lb(X)) the set of upper bounds (resp.
the set of lower bounds) of X. The following statements hold:

(i) If lb(X1) = lb(X2) then ub(X�
1 ) = ub(X�

2 ).
(ii) If ub(X1) = ub(X2) then lb(X�

1 ) = lb(X�
2 ).

Proof. To prove (i) we assume that the sets of lower bounds of X1 and that of
X2 are equal. Let s ∈ ub(X�

1 ). We have s ≥ t� for all t ∈ X1. Therefore, by
(2) in Theorem 3, s� ≤ t�� ≤ t for all t ∈ X1. Thus s� belongs to lb(X1),
which is by assumption the same as lb(X2). It follows that s� ≤ t for all t ∈ X2,
and hence s�� ≥ t� for all t ∈ X2. Therefore t� ≤ s�� ≤ s for all t ∈ X2.
This means that s belongs to ub(X�

2 ). Analogously we can prove that ub(X2) is
contained in ub(X1) and get the equality.

(ii) can be established dually. ��
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Lemma 2 says on one side that if X1 and X2 are subsets of L such that the
equality

∧
X1 =

∧
X2 holds in a completion, then the equality

∨
X�

1 =
∨

X�
2

also holds, and on the other that if
∨

X1 =
∨

X2 then
∧

X�
1 =

∧
X�

2 .

In the sequel, let (L, ∧, ∨,� ,� , 0, 1) be a weakly dicomplemented lattice. We
denote by L̃ the MacNeille completion of L. Since the binary operations ∧, ∨ on
L are restrictions of the binary operations on the complete lattice L̃, we denote
the binary operations on L̃ by the same symbols. We consider the lattice L as a
subset of L̃. Therefore, the top and the bottom elements of both lattices (which
are the same) are denoted by the same symbols, 0 and 1. By a well known
property, for each x ∈ L̃ there are subsets X and Y of L such that x =

∧
X and

x =
∨

Y . Using this representation, we define unary operations on L̃:

x �→ x� :=
∨

X� and x �→ x� :=
∧

Y �.

Lemma 3. Let (L, ∧, ∨,� ,� , 0, 1) be a weakly dicomplemented lattice and L̃ its
MacNeille completion. The unary operations � and � are well defined, and the
equations

(1) x�� ≤ x,
(2) x ≤ y =⇒ x� ≥ y�,

(1’) x�� ≥ x,
(2’) x ≤ y =⇒ x� ≥ y�,

are satisfied.

Proof. The operations x �→ x� and x �→ x� are well defined by Lemma 2.
Therefore, the subsets X and Y can be chosen systematically. Note that L̃ can
be identified with the concept lattice B(L, L, ≤), X with the order filter of L
generated by x and Y with the order ideal of L generated by x. We use this
identification in the rest of the proof. We proceed as follows: we are going to
prove the equations (1) and (2). The others are obtained dually. Let us start with
(2). Let x1 and x2 be elements in L with x1 ≤ x2. Then the order filter generated
by x1, say X1 contains the order filter generated by x2, say X2. Therefore

x�
1 =

∨
X�

1 ≥
∨

X�
2 = x�

2 ,

and (2) is proved. Now let us prove (1). Using (2) we have

x�� = (
∨

X�)� ≤ (t�)� for all t ∈ X,

where X is the order filter generated by x. But

(t�)� =
∨

(↑t� ∩ L)� =
∨

{a� | a ≥ t�, a ∈ L}.

Therefore
(t�)� =

∨
{a� | a� ≤ t��, a ∈ L} ≤ t.

Thus x�� ≤ t for all t ∈ X , and finally x�� ≤
∧

X = x, achieving the proof of
(1). ��
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From now on, we consider algebra (L̃; ∧, ∨,� ,� , 0, 1) of type (2, 2, 1, 1, 0, 0). The
3rd equation in the definition of the weakly dicomplemented lattice implies that
� is a dual semicomplementation (i.e., x ∨ x� = 1 for all x ∈ L). Before we
continue, we verify that it also holds in L̃. It will be useful for later need.

Lemma 4. The equation x ∨ x� = 1 holds for all x ∈ L̃.

Proof. In the isomorphism L̃ ∼= B(L, L, ≤), the top element is represented by
the concept (L, {1}). Now let x := (Y, X) ∈ L̃. According to the definition,
x� =

∨
X�. The element x� can also be represented by (↓x� ∩ L, ↑x� ∩ L). To

prove that x ∨ x� = 1, it is enough to prove

↑x� ∩ ↑x ∩ L = {1}.

Now let b ∈ ↑x� ∩ ↑x ∩ L. We have b ≥ x� =
∨

X�, and consequently

b ≥ t�, for all t ∈ X = ↑x ∩ L.

Moreover, b ≥ x implies b ∈ X . Thus b ≥ b� and 1 = b ∨ b� = b. ��

The intended result is immediate for MacNeille completions that are distributive
(see [Er82]). In fact, in a distributive lattice, the equation (x∧ y)∨ (x∧ y�) = x
is equivalent to y ∨ y� = 1. Therefore if L̃ is distributive, we can conclude
from Lemma 3 and Lemma 4 that the operation x �→ (x�, x�) defines a weak
dicomplementation on L̃.

Corollary 1. If the MacNeille completion L̃ of a weakly dicomplemented lattice
L is distributive then (L̃, ∧, ∨,� ,� , 0, 1) is a weakly dicomplemented lattice.

As the following theorem proves, the above result holds also in lattices with
enough 1-prime and 0-prime elements. We call an element a 1-prime (resp. 0-
prime) if a < 1 = c ∨ d implies a ≤ c or a ≤ d (resp. a > 0 = c ∧ d implies a ≥ c
or a ≥ d) for all c, d ∈ L.

Theorem 4. Let L be a weakly dicomplemented lattice such that the set J1(L)
(resp. M0(L)) of 1-prime (resp. 0-prime) elements is supremum (resp. infimum)
dense in L. Then the MacNeille completion of L is a weakly dicomplemented
lattice.

Proof. To prove the theorem, we only need to prove that (x ∧ y) ∨ (x ∧ y�) = x
and its dual hold. Here the calculation is more tedious. We take advantage of
the context representation. We are going to prove that in B(J1(L), M0(L), ≤)
the equation

(x ∧ y) ∨ (x ∧ y�) = x

holds. It is enough to prove that (x ∧ y) ∨ (x ∧ y�) ≥ x. We set x := (Y1, X1),
y := (Y2, X2) and y� := (Y3, X3). Note that there is no evidence to write y� =
((J1(L) \ Y2)′′, (J1(L) \ Y2)′). However y� =

∨
X�

2 and (Y2 ∪ Y3)′′ = J1(L). By
Theorem 1 we have

x ∧ y = (Y1 ∩ Y2, (X1 ∪ X2)′′) and x ∧ y� = (Y1 ∩ Y3, (X1 ∪ X3)′′).
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Hence,

(x ∧ y) ∨ (x ∧ y�) =
(
((X1 ∪ X2)′′ ∩ (X1 ∪ X3)′′)

′
, (X1 ∪ X2)′′ ∩ (X1 ∪ X3)′′

)
.

But

(X1 ∪ X2)′′ ∩ (X1 ∪ X3)′′ = ((X ′
1 ∩ X ′

2) ∪ (X ′
1 ∩ X ′

3))
′

= (X ′
1 ∩ (X ′

2 ∪ X ′
3))

′

= (Y1 ∩ (Y2 ∪ Y3))
′

and
(Y1 ∩ (Y2 ∪ Y3))

′′ ⊆ Y ′′
1 ∩ (Y2 ∪ Y3)′′ = Y1 (see Lemma 3).

Now we want to prove that (Y1 ∩ (Y2 ∪ Y3))
′ ⊆ Y ′

1 . Let m ∈ M(L) such that
m ∈ (Y1 ∩ (Y2 ∪ Y3))

′

∀g ∈ J(L), g ∈ Y1 ∩ (Y2 ∪ Y3) =⇒ g ≤ m. (∗)

We should prove that m ≥ h for all h ∈ Y1. Let h ∈ Y1. We have h ≤ 1 = y ∨ y�

(see Lemma 4). It follows that h ≤ y or h ≤ y�. Thus h ∈ Y2 or h ∈ Y3. Therefore
h ∈ Y1 ∩ (Y2 ∪ Y3), and thus implies h ≤ m. ��

To capture a larger class of weakly dicomplemented lattices, 1-prime and 0-
prime elements can be replaced by primary elements. An element a ∈ L is called
∨-primary in L (resp. ∧-primary) if for all x ∈ L we have

a �≤ x =⇒ a ≤ x� ( resp. a �≥ x =⇒ a ≥ x�).

In particular join-irreducible elements are ∨-primary, and meet-irreducible ele-
ments ∧-primary.

Lemma 5. Primary elements in L are also primary in L̃.

Proof. Let y := (Y2, X2) ∈ L̃ and a a ∨-primary element in L such that a �≤ y.
We should prove that a ≤ y�. Note that in L̃ we have

∨
Y2 = y =

∧
X2. Since

g �≤
∧

X2, there is some m ∈ X2 ⊆ L such that g �≤ m. As a is ∨-primary it
follows that g ≤ m�. Therefore

a ≤
∨

X�
2 = y�. ��

There are weakly dicomplemented lattices without irreducible elements that still
have enough primary elements. For example the grid L := {0}⊕Z×Z⊕{1} has
no join-irreducible and no meet irreducible elements (apart from 0 and 1). But
the unique weakly dicomplemented lattice structure on L is trivial. Here all the
elements are ∨-primary and ∧-primary. Since the crucial step in the proof of the
theorem is the choice of h, with h ≤ y or h ≤ y� for all y ∈ L̃, we have

Corollary 2. The MacNeille completion of a weakly dicomplemented lattice
with enough primary elements is a weakly dicomplemented lattice.
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For the general case we might expect each weakly dicomplemented lattice to
have enough ∨-primary and ∧-primary elements. Unfortunately, this is not the
case. A typical example is an atomless Boolean algebra. Note that an element a
of a Boolean algebra is ∨-primary if and only if it is an atom. Otherwise there
would be an element a1 such that a1 < a. But a = (a ∧ a1) ∨ (a ∧ a′

1) with
a �≤ a ∧ a1 and a �≤ a ∧ a′

1. It would follow that a ≤ (a ∧ a1)′ ∧ (a ∧ a′
1)

′ = a′,
forcing a to be 0, a contradiction. However its MacNeille completion is a Boolean
algebra, thus a weakly dicomplemented lattice.

To get the result in the general case, we need one more lemma:

Lemma 6. Let h ∈ L and y ∈ L̃ such that h �≤ y and h �≤ y�. Let G and M be
subsets of L such that B(G, M, ≤) is isomorphic to L̃. Then B(G \ {h}, M, ≤)
is isomorphic to L̃.

Proof. Let (Y, X) be the concept corresponding to y in (G, M, ≤). We know
that

∨
Y = y =

∧
X and y� =

∨
X�. From h �≤ y� we obtain h �≤ x� for

all x ∈ X . In addition h �≤ y =
∧

X implies the existence of an element x0

of X such that h �≤ x0. Therefore, h �≤ x0 and h �≤ x�
0 . But the 3rd axiom of

weakly dicomplemented lattice gives h = (h ∧ x0) ∨ (h ∧ x�
0 ) with h > h ∧ x0

and h > h ∧ x�
0 . Therefore

h′′ = {g ∈ G | g ≤ h ∧ x0 or g ≤ h ∧ x�
0 }′′

and
h �∈ {g ∈ G | g ≤ h ∧ x0 or g ≤ h ∧ x�

0 }.

Thus h can be removed from G and the concept lattice of the remaining context
is still isomorphic to that of the initial one. ��

Recall that a lattice satisfies the (descending and ascending) chain conditions if
it has no infinite chains. We can now state the result in the general case.

Theorem 5. The MacNeille completion of a weakly dicomplemented lattice sat-
isfying the chain conditions is a weakly dicomplemented lattice.

Proof. The proof is similar to that of Theorem 4. The change is to prove (�) re-
placing J1(L) with a suitable subset of L. By Lemma 6 such a subset always exists.
In fact Lemma 6 states that Y1 can be replaced by Ỹ1 with

∨
Y1 =

∨
Ỹ1 such that

Ỹ1 ⊆ Y2 ∪ Y3. This gives the desired equality and concludes the proof. ��

Unfortunately we cannot yet remove the chain conditions. The conjecture is that
this result holds in general. If this is the case then the MacNeille completion of
Boolean algebras can be deduced as a special case. In fact Boolean algebras
are determined in the class of weakly dicomplemented lattices by the equation
x� = x� [Kw04, Thm. 3.3.4]. Therefore it is enough to check this equality for �

and �. The 3rd axiom of weakly dicomplemented lattices gives x� ≤ x�. Now let
y ∈ L̃ represented by (Y, X). Then

∨
Y = y =

∧
X . For all g ∈ Y and m ∈ X ,

g ≤ m and by then g� ≥ m�. Thus

y� =
∨

{m� | m ∈ X} ≤
∧

{g� | g ∈ Y } =
∧

{g� | g ∈ Y } = y�.
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This would prove that the completion of a Boolean algebra is again a Boolean
algebra.

3 Conclusion

What is the consequence of Theorem 5 on the concrete representation problem
of weakly dicomplemented lattices? First observe that for each x ∈ L, x ”is
in” L̃ and x� = x� as well as x� = x�. Thus the ϕ : x �→ (↓x, ↑x) is a
weakly dicomplemented lattice embedding of L into L̃. The conjecture is that
“L embeds into A(K

�
�(L)) iff L̃ embeds into A(K

�
�(L))”.
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Polynomial Embeddings and Representations
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Institute for Medical Biometry, Informatics, and Epideomology, Germany

1 Introduction

The following paper activates polynomial methods for data analysis. We want to
embed a given formal context into a polynomial context (Kn, K[x1, . . . , xn],⊥)
in such a way that implications can be computed in the polynomial context,
using the algebraic structure. The basic ideas of formal concept analysis that
are needed here are sketched in [TB1].

The idea to describe given data algebraically has been investigated, for in-
stance, in [V] where linear embeddings into a context of the form (V, V ∗,⊥)
are treated. Here V is a finite-dimensional vector-space, V ∗ is its dual space and
a ⊥ ϕ holds if and only if ϕ(a) = 0.

One finds that polynomial solutions always exist, whereas empirical data in
general does not allow for linear solutions. But nevertheless, polynomial solutions
are not always satifactory because it is difficult to limit the (total) degree of the
polynomials involved, and polynomial descriptions of a high (total) degree are
not very useful for applications.

Unfortunately, if we work over an algebraically closed field, there is a large
class of formal contexts which can only be embedded into a polynomial context
in one variable. A problem of future research therefore could be to find suitable
underlying fields or rings or even universal algebras to work with.

At the end of this paper we briefly touch polynomial representations, a related
topic. As before, polynomial solutions always exist, but it is difficult to limit their
total degree.

2 Polynomial Embeddings

We want to embed a given formal context K1 := (G, M, I) into a context K2

in such a way that the closure BII of a subset B ⊆ M can be computed by
intersecting the closure of the image of B with the image of M in K2. An
embedding of this kind will be called an “intent-preserving embedding”.

The idea is to gain a new description of the formal concepts of K1 and a new
way to compute them, for instance, when K2 carries an algebraic structure.

Vogt, [V], has investigated “linear embeddings” into the context (V, V ∗,⊥),
where V is a vector space, V ∗ is its dual space, and where a ⊥ ϕ holds if and only
if ϕ(a) = 0. He has shown that not every formal context is linearly embeddable.

So we will try to find embeddings into a polynomial context

(Kn, K[x1, . . . , xn],⊥),

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 281–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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where K is a field, K[x1, . . . , xn] is the polynomial ring in n variables over K
and where a ⊥ f holds if and only if f(a) = 0.

Definition 1. A quasi-embedding of a formal context K1 := (H, N, J) into
a formal context K2 := (G, M, I) is a pair (α, β), where α maps from H to G, β
maps from N to M and where hIn holds if and only if α(h)Jβ(n) holds for all
h ∈ H and all n ∈ N .

An intent-preserving quasi-embedding of K1 into K2 is a quasi-embedding
which satisfies for all D ⊆ N the extra condition

(1) β(DJJ ) = (β(D))II ∩ β(N).

A linear embedding is an intent-preserving quasi-embedding into a linear con-
text (V, V ∗,⊥).

A polynomial embedding is an intent-preserving quasi-embedding into a
polynomial context

(Kn, K[x1, . . . , xn],⊥)

over a given field K.

Note that the mappings which constituate the quasi-embedding do not have to
be injective by definition. However, since they are compatible with the relations,
they will be injective on purified contexts.

The following lemma is taken from [V] and shows that one inclusion of equa-
tion (1) holds for arbitrary embeddings.

Lemma 1. A quasi-embedding (α, β) from (H, N, J) into (G, M, I) is an intent-
preserving quasi-embedding if and only if β(DJJ ) ⊆ (β(D))II ∩ β(N) holds for
all D ⊆ N .

Proof. We show that β(DJJ ) ⊇ (β(D))II ∩ β(N) holds for all D ⊆ N and all
quasi-embeddings (α, β) from (H, N, J) into (G, M, I).

For all D ⊆ N the equations α(DJ ) = (β(D))I ∩ α(H) and β(DJJ ) =
((β(D))I ∩ α(H))I ∩ β(N) hold. Since (β(N))I ∩ α(H) ⊆ (β(N))I , we have
((β(D))I ∩ α(H))I ⊇ (β(D))II and therefore the desired inclusion.

Lemma 2. Let (α, β) be an intent-preserving quasi-embedding from (H, N, J)
into (G, M, I). Then the map φβ defined by

φβ(C, D) := ((β(D))I , (β(D))II)

is a
∧

-preserving order embedding of B(H, N, J) into B(G, M, I).

Proof. [V], p.78.

The lemma tells us that the concept lattice of the context to be embedded
can be visualized within the concept lattice of the context which contains the
embedding. In particular, infima of concepts of (G, M, I) can be read of from
B(H, N, J).
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We want to find intent-preserving embeddings. To this purpose we will use the
logic which is inherit in the set of attributes of a formal context. This logic can
be desribed by implications between attributes. Intuitively speaking, a subset
B ⊆M implies an attribute m ∈M if all the objects that are common to B are
in relation with m as well. We write B −→ m. Thus B −→ m holds if and only
if BI ⊆ mI and the latter condition is equivalent to m ∈ BII .

An implication of the form B −→ D with D ⊆ M holds if D −→ m holds
for all m ∈ D. If (α, β) is an intent-preserving quasi-embedding from (G, M, I)
to (H, N, J), we see that B −→ m holds in (G, M, I) if and only if β(B) −→
β(m) holds in (H, N, J): β(B) −→ β(m) ⇐⇒ β(m) ∈ (β(B))JJ ⇐⇒ β(m) ∈
(β(B))JJ ∩ β(M)⇐⇒ β(m) ∈ β(BII)⇐⇒ m ∈ BII ⇐⇒ B −→ m.

Let us have a look at the identical embedding below:

I a b c d

1 × ×
2 × ×
3 × ×

↓
I a b c d e

1 × × ×
2 × ×
3 × × ×

It is easily computed that this embedding is intent-preserving. Thus, we have
a

∧
-preserving order embedding given by ψ(C, D) = (β(D)J , β(D)JJ ), and im-

plications between attributes can also be read of in the concept lattice of the
bigger context.

c

2 3

c

d

2 31

a

eb

da

1

b

Fig. 1. A
�

-preserving order embedding

Note that the smaller context is an intent-compatible1 subcontext of the bigger
context. Indeed, it has been shown in [V, p.81] that the identical embedding of
1 A subcontext (H,N, J) of (G,M, I) is called intent-compatible if for all concepts

(C,D) of (G,M, I) the pair ((D ∩N)J ,D ∩N) is a concept of (H,N, J).
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a subcontext into a supercontext is an implication embedding if and only if it is
intent-compatible.

We want to regard polynomial embeddings. To this purpose we need some
results from algebraic geometry.

Theorem 1. Let K := (Kn, K[x1, . . . , xn],⊥) be a polynomial context over an
algebraically closed field K.
a) (Hilbert’s Nullstellensatz) For any subset A ⊆ K[x1, . . . , xn], we have A⊥⊥ =√

I where I is the ideal generated by A and the radical of I is defined as follows:√
I := {f ∈ K[x1, . . . , xn] | fm ∈ I for some m ∈ N}.

b) Extents of K are called algebraic varieties. Every finite set V ⊆ Kn is
an algebraic variety and finite unions of algebraic varieties are again algebraic
varieties.

Proof. For a proof see [K].

Example 1. Consider the polynomial context over C in two variables

(C, C[x, y],⊥).

For I =< xy2, yz3 > we have

I⊥ = {(a, 0, c) | a, c ∈ C} ∪ {(0, b, 0) | b ∈ C},
which means that I⊥ is the union of the x, z-plane and the y-plane. I⊥⊥ is equal
to < xy, yz >.

Theorem 2. Every finite context K allows for an intent-preserving quasi-em-
bedding into (C, C[x],⊥).

Proof. We may assume that K is purified. Let G = {g0, . . . , gn} be the set of
objects. Define α : G −→ C by α(gi) = i, i ∈ N0 and β(m) :=

∏
mIgk

(x− k) for
all m ∈M . (Here the product is taken over all k ∈ {0, . . . n}).

Obviously, (α, β) is an embedding. Let D ⊆ M . We only have to show that
β(DII) is a subset of (β(D))⊥⊥ ∩ β(M). If β(D) = {f1, . . . , ft} we have

(β(D))⊥⊥ =
√

< (β(D)) > =
√

< gcd(β(D)) > =< gcd(β(D)) >,

because C[x] is principal and because of the special form of our polynomials.
Let DI = {gi1 , . . . , gip}.
Then we have {i1, . . . , ip} = (β(D))⊥.
Each polynomial f̃ ∈ (β(D))⊥⊥ has the form f̃ = (x−i1) . . . (x−ip)g for some

polynomial g ∈ C[x]. Since all polynomials from β(D) are of the form
∏

s∈S(x−s)
where S ⊆ {0, 1, . . . , n} we know that gcd(β(D)) = (x− i1) . . . (x− ip), because
(α, β) is an embedding. We conclude f̃ = (x− i1) . . . (x− ip)g ∈< gcd(β(D)) >=
(β(D))⊥⊥.

Example 2. It has been shown in [V] that the interordinal scale I3 has no linear
embedding into (V, V ∗,⊥) for any finite dimensional vector space V .
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≤ 1 ≤ 2 ≥ 2 ≥ 3
1 × ×
2 × ×
3 × ×

According to the theorem we get a polynomial embedding (α, β) if we choose
α = idG, β(≤ 1) = x− 1, β(≤ 2) = (x− 1)(x− 2), β(≥ 2) = (x− 2)(x− 3) and
β(≥ 3) = x− 3.
Thus the image of I3 in (R, R[x],⊥) has the following form:

x− 1 (x− 1)(x− 2) (x− 2)(x− 3) x− 3
1 × ×
2 × ×
3 × ×

Lemmma 2 tells us that we can visualize the concept lattice of I3 within B(K) via
a

∧
-preserving order embedding φβ defined by φβ(C, D) = ((β(D))⊥, (β(D))⊥⊥)

for all concepts (C, D) of I3. We depict only the image of B(I3) because B(K)
is infinite.

It should be mentioned, that there is a weakness in this method. In order to find
out if an element m belongs to the closure BII for a given B ⊆ M , one has to
check wether β(m) is a multiple of gcd {β(d) | d ∈ B} or not.

This procedure can become rather complicated when the context to be embed-
ded is big, because we can get polynomials of very high degree. So it is desirable
to find better embeddings into polynomial contexts over several variables, limit-
ting the (total) degree of the polynomials used. We will return to this problem
in the course of this section.

Another problem is, that our embedding depends very much on the fact that
the intents of (C, C[x],⊥) are ideals and not just subrings. If we had an embed-
ding into a context (T, R, J) where R is a ring and whose intents are exactly the

x-1

3

(x-1)(x-2) (x-2)(x-3)

x-3

21

Fig. 2. φβ(B(I3))
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subrings2 of R, then for an element m ∈ BII we would derive β(m) from the
elements β(b), b ∈ B, by repeated addition and multiplication. Hence we had an
equation of the form β(m) =

∑±β(bi)β(bj)±β(bk), where bi, bj, bk ∈ B and no
multiplication with arbitrary elements as in the case of polynomial embeddings
would be involved.

Also note that for any other principal ring, we can get intent-preserving em-
beddings using the same method as in 2.

Consider for instance (Z, Z, |), where a|b means that a devides b. The formal
concepts of this context are exactly the pairs of the form ({d | d devides a}, Ia),
a ∈ Z. Here Ia is the ideal generated by a. We get an intent-preserving embedding
as follows: Let pi be the ith prime number and let G = {g1, . . . , gn}. Define (α, β)
by α(gi) = pi and β(mj) =

∏

gkImj

pk. Then we can use the same proof as in 2,

replacing ⊥ by |, to show that we have an implication embedding.
As an example, we consider the following intent-preserving embedding into

(Z, Z, |):
I m1 m2 m3 m4

g1 ×
g2 × × × ×
g3 ×
g4 ×

↓
| 6 15 21 3
2 ×
3 × × × ×
5 ×
7 ×

We can visualize ψ(B(K)) as a
∧

-sublattice of the infinite lattice B(Z, Z, |).
We can read of the implications between attributes. We have, for instance,

β(m1), β(m2) −→ β(m3), since β(m3) = 21 is a multiple of gcd(β(m1), β(m2)) =
3, and so m1, m2 −→ m3.

As mentioned before, it is desirable to find a better embedding for a given for-
mal context than the method in 2would suggest. We have a look at the following
context K:

I a b c d e

1 × × ×
2 × ×
3 × ×
4 × × × × ×

2 If we consider R as an universal algebra, and if F is the free algebra over {x} in the
variety generated by R, then the context (F × F,R,⊥), with (f, g) ⊥ r :⇐⇒ f(r) =
g(r), has this property. [TB2].
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x(x-1) (x-1)(x-3)

x-1

(x-1)(x-2)

Fig. 3. ψ(B(K))

The method from 2 yields the following embedding:
I x2 − 5x + 4 x2 − 6x + 8 x2 − 7x + 12 x3 − 7x2 + 14x − 8 x3 − 8x2 + 19x − 12
1 × × ×
2 × ×
3 × ×
4 × × × × ×

We see that the polynomials involved are already rather complicated, partic-
ularly those representing d and e. But there is a simpler embedding using two
variables which lowers the degrees of the occuring polynomials:

I x y x + y xy (x + y)x
(0, 1) × × ×
(1, 0) × ×

(−1, 1) × ×
(0, 0) × × × × ×

One computes that this embedding is an intent-preserving embedding into

(C2, C[x, y],⊥).

The interesting question is how we did find this embedding.
The attributes a, b are both not implied by any other single attribute. So it

is natural to choose rather simple polynomials to represent them. Since they
are different and since we want to involve at least two variables, we choose x
and y respectively. We observe that the attributes c, d and e are implied by
{a, b}. Consequently, we must choose elements from

√
< x, y > =< x, y > to

represent β(c), β(d) and β(e). The attribute c is not implied by a or b. So we
must have β(c) ∈< x, y > \[< x > ∪ < y >]. The simplest possibility fulfilling
this requirement is β(c) = x + y. We observe that {x, x + y} implies y and
that {y, x + y} implies x in (C2, C[x, y],⊥). Therefore we have to check if the
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implications {a, c} −→ b and {b, c} −→ a hold. Since this is true, we may choose
β(c) = x + y. Since d is already implied both by a and b, we also have d ∈< x >
and d ∈< y >. Therefore, we check if we can choose the simplest possibilty
fulfilling these requirements, β(d) = xy. Since dI is the union of aI and bI and
since we have (fg)⊥ = f⊥∪g⊥ in (C2, C[x, y],⊥), it is actually possible to choose
β(d) = β(a)β(b) = xy. As already mentioned, we must have β(e) ∈< x, y >.
Since e⊥ is the union of a⊥ and c⊥, we choose β(e) = (x + y)x. We observe that
all other implcations are fulfilled as well. For instance, {d, e} implies a, but we
also have x ∈ √< x + y, xy >. Indeed, x2 = x(x + y)− xy ∈< x + y, xy >.

The question arises how arbitrary formal contexts can be treated analogously.
One idea is to write down systematically all implications that hold in the context
to be embedded and to find polynomials for which exactly those implications are
fulfilled in β(M). We will show that such a systematic listing always exists and
that it is sufficient to consider this list. We need some definitions to be able to
introduce a “basis” of the set of implications.

Definition 2. A subset T ⊆ M respects an implication B −→ D if B �⊆ T or
D ⊆ T . T respects a set of implications L if it respects all implications from L.

Lemma 3. An implication B −→ D holds in a context (G, M, I) if and only if
each object intent gI , g ∈ G, respects B −→ D.

Proof. [GW, p.80]

Definition 3. An implication B −→ D follows from a set L of implications
between attributes if each subset of M which respects L, respects B −→ D as
well.

A family of implications is closed if all the implications that follow from L
belongs already to L.

L is complete if each implication of (G, M, I) follows from L.
L is irredundant if no implication of L follows from the other implications

of L.

Note that there are many implications which follow trivially from other impli-
cations. For instance, A −→ B holds for all B ⊆ A and if A −→ B holds, we
conclude that A −→ C holds if C ⊆ B. In the same way, we have

⋃
j∈J Aj −→⋃

j∈J Bj if Aj −→ Bj holds for all j ∈ J . In particular, A −→ C holds if A ⊇ B
and B −→ C holds.

The following recursive definition is the decisive step in finding a basis of the
implications of a formal context.

Definition 4. Let (G, M, I) be a finite context. P ⊆ M is called a pseudo-
intent of (G, M, I) if P �= P II and if for every pseudo-intent Q ⊆ P , Q �= P ,
we have QII ⊆ P .

Theorem 3. The set of implications L := {P −→ P II |P pseudo− intent} is
irredundant and complete.

Proof. [GW, p.85].
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Of course, it is sufficient to write the implications in the form P −→ P II \P . The
set of these implications is called Duquenne-Guiges basis of the implications
between the attributes of (G, M, I). An algorithm to compute the Duquenne-
Guiges basis can be found in [GW, p.85].

Theorem 3 and the following lemma will yield a method to find intent-
preserving embeddings.

Lemma 4. A quasi-embedding (α, β) : (H, N, J) −→ (G, M, I) is an intent-
preserving quasi-embedding if and only if for all m ∈ M and all D ⊆ M the
validity of D −→ m in (G, M, J) is equivalent to the validity of β(D) −→ m in
(G, M, I).

Proof. One implication has already been shown afore Theorem 1.
Therefore let (α, β) : (H, N, J) −→ (G, M, I) be a quasi-embedding with the

equivalence of validities of implications and suppose that β(DJJ ) �= (β(D))II ∩
β(N). Using Lemma 1,we see that there is an element β(n) ∈ (β(D))II ∩
β(N) with n /∈ DJJ . This means that the implication D −→ n does not hold
in (G, M, I). Thus β(D) −→ β(n) does not hold in (G, M, I), hence β(n) /∈
(β(D))II . This is a contradiction to the choice of n and the lemma is proven.

Example 3. We wish to illustrate how we can use the Duquenne-Guiges basis
and the lemma above to obtain intent-preserving quasi-embeddings.

In [GW, p.29] a relatively large context concerning the membership of coun-
tries of the third world to certain groups of countries can be found. Here we
present a purified version of this context.

I G77 Blockfrei LLDC MSAC OPEC AKP
Afghanistan × × × ×

Aegypten × × ×
Angola × × ×

Algerien × × ×
Bahamas × ×
Botswana × × × ×
Brasilien ×
Burundi × × × × ×
Bolivien × ×

Malediven × × ×
Birma × × ×
Brunei

Elfenbeinkueste × × × ×
El Salvador × ×

Gabun × × × ×
Haiti × × × ×

Kirbati × ×
Mongolei ×
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The abbreveations mean: LLDC:=Least Developed Countries, MSAC:= Most
Seriously Affected Countries, AKP:=African, Karribean and Pacific Countries,
G77:=Gruppe der 77.

In order to find a polynomial embedding of this contexts we compute its
Duquenne-Guiges basis. We find the implications

OPEC −→ BLOCKFREI, GRUPPE DER 77
MSAC −→ GRUPPE DER 77

BLOCKFREI −→ GRUPPE DER 77
G77, BLOCKFREI, MSAC, OPEC −→ LLDC, AKP
G77, BLOCKFREI, LLDC, OPEC −→ MSAC, AKP

The premisses of these implications can still be simplified. We observe that
{MSAC, OPEC} already implies LLDC and AKP and that {LLDC, OPEC} al-
ready implies AKP and MSAC. Therefore it is enough to consider the Duquenne-
Guige basis with minimal premisses.

OPEC −→ BLOCKFREI, GRUPPE DER 77
MSAC −→ GRUPPE DER 77

BLOCKFREI −→ GRUPPE DER 77
MSAC, OPEC −→ LLDC, AKP
LLDC, OPEC −→ MSAC, AKP

Now suppose we have a quasi-embedding (α, β) into (Kn, K[x1, . . . , xn],⊥). Let
β(OPEC) = O, β(GRUPPE DER 77) = G, β(BLOCKFREI) = B, β(MSAC) =
M , β(LLDC) = L and β(AKP) = A.

In order to obtain an intent-preserving embedding, the polynomials G, B, L, M,
O and A have to satisfy the implications that correspond to the implications
above, namely

O −→ B, G
M −→ G
B −→ G

M, O −→ L, A
L, O −→M, A .

If these implications hold in (Kn, K[x1, . . . , xn],⊥), then also all implications
which follow from them will hold in (Kn, K[x1, . . . , xn],⊥). If we choose our
polynomials carefully, i.e. if they are chosen such that no further implications
between them hold, Lemma 4 tells us that we have found an intent-preserving
embedding.

To determine our polynomials we start with those premisses which consist of
a single element. In our case these are O, M and B and we chose x, y and z
respectively to represent them.

Next we consider the conclusions of the one-element premisses. We observe
that the premiss B is already implied by O. Therefore, we have to revise B.
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Since B is implied by O, a power of B must be in the ideal generated by O. So
we can choose B as a multiple of O, B := xz.

G is implied by all the one-element premisses and we can take G as a common
multiple of x, y and xz. However, it is not sufficient to define G := xyz, because
{G77}I is not equal to the union of{OPEC}I, {MSAC}I and {BLOCKFREI}I.
So we choose G = wxyz, where w is a new variable. (Of course, we could choose a
prime element different from x, y, z as well).

We continue with those premisses which consist of two elements. Now we
start with premisses whose elements are already determined, in our case {M, O},
which implies L an A. Hence a power of L must be in < x, y >. Furthermore, L is
not implied by M or O alone and we must have L ∈< x, y > \[< x > ∪ < y >],
L = f1x + h1y with suitable polynomials f1, h1 ∈ K[w, x, y, z]. We may not
choose L = x + y, because in this case the implication M, L −→ O would
hold since {x + y, y} implies x. But MSAC, LLDC −→ OPEC is an im-
plication that does not follow from our list and so M, L −→ O must not
hold, which means that at least one of the polynomials f1 and h1 must not be
a constant.

However, the remaining combination L, O −→M is valid, hence

y ∈
√

< g1x + h1y, x >

and we can choose h1 = 1. Of course, we cannot chose an arbitrary polynomial
f1, f1 still has to be determined. The same is true for all other polynomials
which occur later.

Next we consider M, O −→ A. Since the implications M, A −→ O and
O, A −→M are not valid we must choose A = f2x + g2y, where both f2 and g2

are polynomials of degree ≥ 1.
Finally, we have to check the implication L, O −→ M, A. The implication

L, O −→M has already been treated.
It remains to regard L, O −→ A. We have already found requirements for

L, O and A. {f1x + y, x} implies A = f2x + g2y for any choice of f1, f2 and g2.
Thus L, O −→ A will hold. Neither O, A −→ L nor L, A −→ O must hold. But
if we choose our polynomials f1, f2 and g2 carefully these requirements will be
fulfilled.

We summarize that our reasoning suggests to look for an intent-preserving
quasi-embedding with O = x, M = y, B = xz, G = wxyz, L = f1x + y and
A = f2x + g2y where f1, f2 and g2 have still to be determined. In view of
Lemma 4it remains to find a quasi-embedding (α, β) into (C4, C[w, x, y, z],⊥)
for which the elements of the image under β have the form above. (Note that it
is not clear by now if such a quasi-embedding exists because 4 presupposes the
existence of the embedding).

We will obtain a quasi-embedding if we determine all unknown numbers and
polynomials in the table below. All letters representing coordinates are not equal
to zero.
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I wxyz xz f1x + y y x f2x + g2y

1) (0, 1, 0, 0) × × × ×
2) (0, a, 0, 0) × × ×
3) (0, b, c, 0) × × ×
4) (0, 0, d, 0) × × ×
5) (0, e, l, m) × ×
6) (0, n, p, 0) × × × ×
7) (0, q, r, s) ×
8) (0, t, 0, 0) × × × × ×
9) (0, a1, a2, 0) × ×
10) (0, b1, b2, 0) × × ×
11) (0, c1, 0, c2) × × ×
12) (d1, d2, d3, d4)
13) (0, e1, 0, 0) × × × ×
14) (0, l1, 0, l2) × ×
15) (0, 0, m1, 0) × × × ×
16) (0, n1, 0, n2) × × × ×
17) (p1, p2, p3, p4) × ×
18) (q1, q2, q3, q4) ×

We try to determine the coordinates and the polynomials simultaneously. We
first consider those points whose only non-zero coordinate is the x-coordinate.
These points correspond to the countries which are members of BF but neither
of MSAC nor of OPEC. These are the objects 1), 2), 8) and 13) which core-
spond to (0, 1, 0, 0), (0, a, 0, 0), (0, t, 0, 0) and (0, e1, 0, 0) respectively. We read
from the cross table that we must find polynomials f

(1)
1 and f

(1)
2 which fulfill

the following equalities and inequalities:

1) f
(1)
1 (0, 1, 0, 0) = 0 f

(1)
2 (0, 1, 0, 0) �= 0

2) f
(1)
1 (0, a, 0, 0) �= 0 f

(1)
2 (0, a, 0, 0) �= 0

8) f
(1)
1 (0, t, 0, 0) = 0 f

(1)
2 (0, 1, 0, 0) = 0

13) f
(1)
1 (0, e1, 0, 0) �= 0 f

(1)
2 (0, e1, 0, 0) = 0

Note that f
(1)
1 vanishes both on (0, 1, 0, 0) and (0, t, 0, 0), which are different

points as we see from the cross table. Hence the total degree of f
(1)
1 must be

at least two since the degree of f
(1)
1 in x is already two. In the same way we

conclude that the total degree of f
(1)
2 must be at least two as well.

We choose the following solution: f
(1)
1 = (x− 1)(x− 2), f

(1)
2 = (x− 2)(x− 3),

a = 4, t = 2 and e1 = 3.
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Next we consider all points which involve only the y-coordinate, (0, 0, d, 0)
and (0, 0, m1, 0). This yields restrictions only for g2.

g
(1)
2 (0, 0, d, 0) �= 0 and g

(1)
2 (0, 0, m1, 0) = 0.

We choose g
(1)
2 = y − 1, m1 = 1 and d = 2.

We proceed with those points whose w-coordinate and z-coordinate are zero -
i.e. 3), 6), 9) and 10) - and obtain the following conditions:

3) f
(2)
1 (0, b, c, 0) + c �= 0 f

(2)
2 (0, b, c, 0)b + (c − 1)c + 0

6) f
(2)
1 (0, n, p, 0)n + p = 0 f

(2)
2 (0, n, p, 0)n + (p − 1)p �= 0

9) f
(2)
1 (0, a1, a2, 0)a1 + a2 �= 0 f

(2)
2 (0, a1, a2, 0)a1 + (a2 − 1)a2 �= 0

10) f
(2)
1 (0, b1, b2, 0)b1 + b2 = 0

f
(2)
2 (0, b1, b2, 0)b1 + (b2 − 1)b2 �= 0

(Here we use the observation that it is possible to maintain g
(1)
2 when further

points are involved). Of course, we demand that the polynomials f
(2)
1 and f

(2)
2

fulfill the equalities and inequalities settled so far as well.
By now, f

(1)
1 and f

(1)
2 are polynomials in x alone. To keep our polynomials

as simple as possible we look for solutions of the form f
(2)
1 = f

(1)
1 + f̃1 and

f
(2)
1 = f

(1)
2 + f̃2, where f̃1 and f̃2 are polynomials in y which vanish on zero.

Therefore we obtain the following new conditions:

b(f (1)
1 + f̃1)(0, b, c, 0) + c �= 0 b(f (1)

2 + f̃2)(0, b, c, 0) + (c − 1)c + 0

n(f (1)
1 + f̃1)(0, n, p, 0) + p = 0 n(f (2)

2 + f̃2)(0, n, p, 0) + (p − 1)p �= 0

a1(f
(2)
1 + f̃1)(0, a1, a2, 0) + a2 �= 0

a1(f
(2)
2 + f̃2)(0, a1, a2, 0) + (a2 − 1)a2 �= 0

b1(f
(2)
1 + f̃1)(0, b1, b2, 0) + b2 = 0 b1(f

(2)
2 + f̃2(0, b1, b2, 0) + (b2 − 1)b2 �= 0

After some easy computations we find that we can choose f̃1 = −y and
f̃2 = −2y, hence f

(2)
1 = (x − 1)(x − 2) − y and f

(2)
2 = (x − 2)(x − 3) − 2y.

Furthermore, we can choose b = 2, c = 5, p = 1, a1 = 2, a2 = 1, b1 = 1 and
b2 = 3.
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We continue with those points where only the w-coordinate is equal to zero,
namely 5), 7), 11), 14) and 16). Again we try to re-use the solutions we have
found so far. We look for polynomials f̂1 and f̂2 in z alone which vanish on zero,
such that f

(3)
1 = f

(2)
1 + f̂1 and f

(3)
2 = f

(2)
2 + f̂2 hold. We obtain the conditions

listed below.

5) e(f (2)
1 + f̂1)(0, e, l, m) + l �= 0 e(f (2)

2 + f̂2)(0, e, l, m) + l(l − 1) = 0

7) q(f (2)
1 + f̂1)(0, q, r, s) + r �= 0 q(f (2)

2 + f̂2)(0, q, r, s) + r(r − 1) �= 0

11) c1(f
(2)
1 + f̂1)(0, c1, 0, c2) = 0

c1(f
(2)
2 + f̂2)(0, c1, 0, c2) �= 0

14) l1(f
(2)
1 + f̂1)(0, l1, 0, l2) �= 0

l1(f
(2)
2 + f̂2)(0, l1, 0, l2) �= 0

16) n1(f
(2)
1 + f̂1)(0, n1, 0, n2) = 0

n1(f
(2)
2 + f̂2)(0, n1, 0, n2) = 0

We start with the last condition because it is a simultaneous equality and
therefore the most difficult to solve. We check if we can choose f̂1 = z. Hence
n1((n1−1)(n2−1)+n2) = 0 must hold and we choose n1 = 4 and n2 = −6. Now
we must interpolate f̂2 from the equation 4((4−2)(4−3)+f̂2(0, 4, 0,−6)) = 0. We
obtain f̂2 = 1

3 . Now we must check whether the remaining eqalities which arise
from 5) and 11) can be fulfilled. The equation c1[(c1−1)(c1−2)+ c2] = 0 can be
solved by c1 = 5 and c2 = 12 and we observe that the inequality which stems from
11), i.e. 5c1(f (2)

2 + f̂2)(0, c1, 0, c2) �= 0, is fulfilled as well. A solution for the equa-
tion e((x−2)(x−3)−2y + 1

3z)(0, e, l, m) = 0 is e = 2, l = 1, m = 6 and again we
see that this solution fulfills the inequality arising from 5) as well. Now it is easy
to solve the remaining inequalities, we can choose, for instance, q = r = s = 1 and
l1 = l2 = 1.

We proceed with 17) and 18). As before we try to find polynomials in w

which can be added to f
(3)
1 and f

(3)
2 respectively. We find that we can choose

f1 := f
(4)
1 = (x − 1)(x − 2) − y + z + w and f2 := f

(4)
2 = (x − 2)(x −

3) − 2y + 1
3z + 1

3w and p1 = −1, p2 = p3 = p4 = 1, q1 = −1, q2 = q3 =
q4=2.

Finally, we must consider the empty row 12). We observe that none of the
polynomials representing groups of countries vanishes on (1, 1, 1, 1). We obtain
the result shown below.
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I wxyz xz f1x + y y x f2x + g2y

(0,1,0,0) × × × ×
(0,4,0,0) × × ×
(0,2,5,0) × × ×
(0,0,2,0) × × ×
(0,2,1,6) × ×
(0,1,1,0) × × × ×
(0,1,1,1) ×
(0,2,0,0) × × × × ×
(0,2,1,0) × ×
(0,1,3,0) × × ×

(0,5,0,-12) × × ×
(1,1,1,1)
(0,3,0,0) × × × ×
(0,1,0,1) × ×
(0,0,1,0) × × × ×
(0,4,0,-6) × × × ×
(-1,1,1,1) × ×
(-1,2,2,2) ×

with f1 = (x − 1)(x − 2) − y + z + w, f2 = (x − 2)(x − 3)− 2y + 1
3z + 1

3w and
g2 = y − 1.

Let us return to the beginning of our example. We observe at least two crit-
ical points. First, the element G had to be revised, which is an undesirable
effect. Moreover, at the end of our reasoning we were left with an implica-
tion, namely L, O −→ A, where the occuring polynomials were already deter-
mined or subject to certain restrictions. However, how can we be sure that
the implication L, O −→ A does not contradict the restrictions we have found
so far?

To avoid revision or contradiction we need an ordering on the set of implications.
The following lemma suggests to work “column-wise”.

Lemma 5. Let (G, M, I) be a formal context, let N ⊆M and let (G, N, I∩(G×
N)) be the corresponding subcontext.

Then the set of all implications of (G, N, I ∩ (G × N)) is equal to the set of
all implications of (G, M, I) in which only elements from N occur both in the
premiss and in the conclusion.

Example 4. We consider the following formal context K = (G, M, I).
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I a b c d e f

1 × ×
2 ×
3 × ×
4 ×
5 × ×
6 ×

We first consider a small subset N ⊆ M and try to find an intent-preserving
embedding of (G, N, I ∩ (G×N)) into (Cn, C[x1, . . . , xn],⊥). Starting from this
embedding we try to find an intent-preserving embedding from (G, N ∪{m}, I ∩
(G × (N ∪ {m})) into (Cn, C[x1, . . . , xn],⊥). The lemma tells us that we can
use the embedding we have found so far, we only have to determine β(m)
from the implications that include m either in the premiss or in the conclu-
sion. The other implications do not depend on the choice of β(m). It is rea-
sonable to start with a maximal independent subset N of M , i.e. only trivial
implications hold among the elements of N , and to choose different variables to
represent them.

In our example we can choose N = {a, c} and we define β(a) = x and β(c) = y
to represent them. Hence we are looking for a polynomial embedding of K into
(C2, C[x, y],⊥).

Obviously,

x y

(0, 1) ×

(1, 0) ×

is an intent-preserving embedding of (G, N, I ∩ (G×N)) into (C2, C[x, y],⊥). The
empty rows symbolize that the missing objects will be determined in one of the fol-
lowing steps. Now we consider N1 := N ∪{e} and K1 := (G, N1, I∩(G×N1)). We
must check all implications involving e. We observe that {a, c} −→ e, {a, e} −→ c
and {c, e} −→ a hold. Therefore we can choose β(e) = x + y and

x y x + y

(0, 1) ×

(1, 0) ×

(−1, 1) ×
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is an intent-preserving embedding.
We proceed with those elements that are implied by one-element premisses.

Let N2 := N1 ∪ {b} and K2 := (G, N2, I ∩ (G×N2)).

x b y x + y

(0, 1) × ×
×

(1, 0) ×

(−1, 1) ×

Thus we are looking for a polynomial b ∈ C[x, y] which satisfies exactly the
implications that follow from

x −→ b
(y, x + y −→ b)

y, b −→ x, (x + y)
b, x + y −→ x, y.

The implications in brackets will already be fulfilled if all the other implica-
tions are fulfilled. Hence, we must have b = xg for some polynomial g, x ∈√

< xg, y > and x, y ∈< xg, x+y >. We observe that b := x(x+2y) fulfills these
requirements.

We proceed with the following subcontext and try to determine d.

x x(x + 2y) y d x + y

(0, 1) × ×
(1,− 1

2 ) ×
(1, 0) × ×

×
(−1, 1) ×

If we translate the implications involving d into requirements in our polynomial
context we obtain d = yh for some polynomial h, d ∈ √

< x + y, x(x + 2y) >,
{x, y} ⊆ √< d, x + y >, {x, y} ⊆ √

< d, x(x + 2y) >, and y ∈ √< d, x >. A
solution to this conditions is d := y(y + 2x).

Finally, we consider the object f . We obtain the following conditions for f :
f ∈< x + y >, f ∈< x, y >, f ∈ √

< x(x + 2y), y >, f ∈ √
< x, y(y + 2x) >,

f ∈ √
< x(x + 2y), y(y + 2x) >, {x, y} ⊆ √

< f, y(y + 2x) >, {x + y, x} ⊆√
< f, y >, {x, y} ⊆ √

< f, x(x + 2y) > and y ∈ √< f, x >. A solution is f :=
(x + y)(x + 3y) and we obtain the following intent-preseving embedding of K

into (C2, C[x, y],⊥):
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x x(x + 2y) y y(y + 2x) x + y (x + y)(x + 3y)
(0, 1) × ×
(1,− 1

2 ×
(1, 0) × ×

(− 1
2 , 1) ×

(−1, 1) × ×
(3,−1) ×

.

Unfortunately, there is a large class of formal contexts which do not allow for a
polynomial embedding over C in more than one variable.

Lemma 6. Let us consider the formal context K below:

a b c d
1 ×
2 × ×
3 × ×
4 × ×

The set {b, c, d} is independent. Therefore our contemplation elaborated afore
suggests to look for a polynomial embedding (α, β) : K −→ (C3, C[x, y, z],⊥)
with β(b) = x, β(c) = y and β(d) = z.
We observe that the following conditions must hold for f := β(a):

x, y, z −→ f
f, x −→ y, z
f, y −→ x, z
f, z −→ x, y.

Let us consider the implication x, f −→ y, z. Thus the polynomial f̃ := f(0, y, z) ∈
C[y, z] must vanish on (0, 0) exclusively. However, there is no polynomial in C[y, z]
that vanishes only on a single point. Hence we cannot find a polynomial embedding
of the desired form. It is easily seen that there is no polynomial embedding over
C in more that two variables at all. The only polynomial embedding over C is the
embedding in one variable described in 2.

We summarize that polynomial embeddings over C in more than one variable in
general do not exist when there is proper premiss that consists of three or more
elements.

The situation is somewhat different if we consider polynomial embeddings over
R. Here we have polynomials that vanish only on a single point. For instance,
the only zero of x2 + y2 is the origin (0, 0). Therefore {x2 + y2, z} implies x
and y. In the same way {x2 + z2, y} implies x and z and {y2 + z2, x} implies
y and z. Hence, we should try to choose f := x2 + y2 + z2 in order to find an
implication-embedding into (R3, R[x, y, z],⊥).

The polynomials x2 + y2 + z2, x, y and z actually satisfy exactly the desired
implications, yet they cannot be used to define an implication embedding from
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K into (R3, R[x, y, z],⊥). Since the object “1” is in relation with a, f must be
in relation with α(1). Thus we must have α(1) = (0, 0, 0) because (0, 0, 0) is the
only zero of f . However, this implies that β(b) = x, β(c) = y and β(d) = z
are in relation with α(1) = (0, 0, 0) as well, which contradicts the fact that
none of the attribures b, c and d is in relation with “1”. But we get an impli-
cation of the following context K̃, whose concept lattice is isomorphic to that
of K.

a b c d
1 × × × ×
2 × ×
3 × ×
4 × ×

↓
x2 + y2 + z2 x y z

(0, 0, 0) × × × ×
(0, 1, 0) × ×
(0, 0, 1) × ×
(1, 0, 0) × ×

3 Polynomial Representations

In the final section we briefly touch the related topic of polynomial representa-
tions. Similarly to the case of polynomial embedding, this leads to a genarelized
interpolation problem. In our case the points of interpolation are not given ex-
plicitly, but they are subject to certain ordinal conditions. We observe that it
is very difficult to find optimal solutions, i.e. solutions which minimize the total
degree of the polynomials that are involved. We take up the ideas of geometric
representation of data and algebraic descriptions of dependencies of attributes, as
they are treated in [W]. There empirical structures are represented by numerical
relational structures, for instance by real n-dimensional vector spaces. This ap-
proach is settled within the framework of numerical measurement. The existence
of measurements and the meaningfulness of manipulations of measurements are
analyzed fundamentally in [Kr]. Following the spirit of the first section, we are
looking for representations in affine space rather than in vector spaces, and we
describe dependencies of attributes via polynomials and not via elements from
a vector space or an ordered quasigroup.

We present our ideas within the setting elaborated in [W]. First, we define a
formal model for (an important kind of) empirical data.

Definition 5. A quadruple K := (G, M, (W,≥), I) is called ordinal context,
if G and M are sets, (W,≥) is an ordered set, and I is a ternary relation on
G ×M ×W , such that for each g ∈ G, m ∈ M , there is exactly one element
w ∈W with (g, m, w) ∈ I.
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The elements of G, M and W are called objects, attributes and attribute values
respectively. We often write m(g) = w if (g, m, w) ∈ I and read ‘the object g
has the value w for the attribute m’.

The following example of a linear representation is taken from [W]. It shows
data from Schiffmann and Falkenberg (1968), describing the amount of absorp-
tion for four different colour stimuli by eleven receptors in the retina of a goldfish.

Receptor Violet Blue Blue Blue-Green
430 458 485 498

1 147 153 89 57
2 153 154 110 75
3 145 152 125 100
4 99 101 122 140
5 46 85 103 127
6 73 78 85 121
7 14 2 46 52
8 44 65 77 73
9 87 59 58 52
10 60 27 23 24
11 0 0 40 39

The data on colour stimuli is represented in the figure on the next page.
The orders with respect to the stimuli ‘violet’ can be read of from the picture

by projecting onto the x-axis, the order with respect to ‘blue-green’ by projecting
onto the y-axis. The attribute ‘blue 485’ is represented by the system of parallel
lines in the direction of the arrow labelled ‘b485’, the attribute ‘blue 458’ is
represented by the other system of parallel lines.

We give a general definition for the situatuion we encountered here.

Definition 6. An ordinal context K := (G, M, (W,≥), I) with attributes
m1, . . . , mn+l has a simultaneous linear representation in a n-dimensional real
vector space with respect to m1, . . . , mn, if there are real n- tuples αj

1, . . . α
j
n,

j = 1, . . . , l , and an injective mapping ϕ : G −→ R
n with

ms(g) ≥ ms(h)⇐⇒ π(ϕ(g)) ≥ π(ϕ(h)), s = 1, . . . , n

mn+j(g) ≥ mn+j(h)⇐⇒
n∑

s=1
αj

sπs(ϕ(g)) ≥
n∑

s=1
αj

sπs(ϕ(h)), j = 1, . . . , l

for all g, h ∈ G. (Here πs denotes the projection to the s coordinate axis).

Thus, the definition means that the objects of the given ordinal context are
mapped into R

n such that the orders of n attributes are represented on the n
coordinate axis and the remaining l orders are described by l different linear
combinations, specified by the n-tuples αj

1, . . . , α
j
n, j = 1, . . . , l.

One finds that an ordinal context has to satisfy strong conditions in order to be
linear representable. Results concerning this question can be found in [W]. Usu-
ally, empirical data will not fulfill the requirements. Therefore we consider repre-
sentations by more general mathematical objects, for instance by polynomials.
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Fig. 4. A linear representation

Definition 7. An ordinal context K := (G, M, (W,≥), I) with attributes
m1, . . . , mn+l has a simultaneous polynomial representation in the affine space
R

n, if there are real polynomials in n variables fj, j = 1, . . . , l, and an injective
mapping ϕ : G −→ R

n, such that

ms(g) ≥ ms(h)⇐⇒ π(ϕ(g)) ≥ π(ϕ(h)), s = 1, . . . , n
mn+j(g) ≥ mn+j(h)⇐⇒ fj(ϕ(g)) ≥ fj(ϕ(h)), j = 1, . . . , l

holds for all g, h ∈ G.

Thus, polynomial representations are a generalization of linear representations,

since every linear expression of the form
n∑

s=1
αj

sxs is a polynomial.

Theorem 4. Let K := (G, M, R, I) be a finite real-valued ordinal context with
M = {m1, . . . , mn}.

Then K is simultaneously representable in R
2.

Proof. We choose ϕ : G −→ R
2 such that (1) is fulfilled, which is always possible.

Now it is sufficient to find polynomials fj, j = 3, . . . , n with fj(ϕ(g)) = mj(g)
for all g ∈ G. Therefore, the theorem follows from the lemma below.



302 T. Becker

Lemma 7. Let a1, . . . , am ∈ R
n and b1, . . . , bm ∈ R such that b1 = bj if ai = aj

for i, j ∈ {1, . . . , n}. Then there is a polynomial
f ∈ R[x1, . . . , xn] with

(�) f(ai) = bi

for all i ∈ {1, . . . , m}.
Proof. It is sufficient to find polynomials fk, k = 1, . . . , m with

(��) fk(ai) = δki, i = 1, . . . , m.

Then f :=
m∑

k=1

bifk will yield the desired interpolation.

Consider {a1, . . . , an−1}. We have {a1, . . . , an−1}⊥⊥ = {a1, . . . , an−1} and
{a1, . . . , an}⊥⊥ = {a1, . . . , an}, because finite sets are always algebraic varieties.
Since {a1, . . . , an−1} ⊆ {a1, . . . , an}, we have {a1, . . . , an}⊥ ⊆ {a1, . . . , an−1}⊥.
If we had {a1, . . . , an}⊥ = {a1, . . . , an−1}⊥, we would conclude {a1, . . . , an}⊥⊥=
{a1, . . . , an−1}⊥⊥, hence {a1, . . . , an−1} = {a1, . . . , an}which is a contradiction.
This means that there is a polynomial f̂1 ∈ {a1, . . . , an−1}⊥ \ {a1, . . . , an}⊥, i.e.
f(a1) = . . . = f(an−1) = 0, f(an) �= 0. If we devide f̂1 by f̂1(an) we obtain a
polynomial f1 which satisfies (��). By the same way of reasoning, we find polyno-
mials fk, k = 2, . . . , n, which satisfy (��) and the proof is completed.
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Abstract. This paper offers a mathematical analysis of labelled line dia-
grams of finite concept lattices to gain a better understanding of those
diagrams. The main result is the Basic Theorem on Labelled Line Dia-
grams of Finite Concept Lattices. This Theorem can be applied to justify,
for instance, the training tool “CAPESSIMUS - A Game of Conceiving
Concepts” which has been created to support the understanding and the
drawing of appropriate line diagrams of finite concept lattices.
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1 Introduction

For successfully applying Formal Concept Analysis in practice, well-readable
diagrams of concept lattices are needed. Although the developed computer pro-
grams for drawing concept lattices are quite useful, they are still far from being
satisfying, in particular, with respect to purpose support and adequate content
representation. Human beings still have to take over the essential part of cre-
ating diagrammatic knowledge representations which are able to inspire, stimu-
late, and guide human thought. The purpose of this paper is to give some basic
support for training humans in drawing labelled line diagrams of finite concept
lattices.

It is important to realize that, in practice, labelled line diagrams of concept
lattices have a three-fold semantics: a mathematical, a philosophical and a spe-
cial purpose-oriented semantics. This triadic view is derived from the first level
of Peirce’s classification of sciences ([Pe92]; p.114) which lists the sciences in the
order of abstractness: I. Mathematics II. Philosophy III. Special Sciences, where
Mathematics is viewed as the most abstract science studying hypotheses exclu-
sively and dealing only with potential realities, Philosophy is considered as the
most abstract science dealing with actual phenomena and realities, while all
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other sciences are more concrete in dealing with special types of actual realities
(see [GW06]; p.216).

Since, in practice, labelled line diagrams of concept lattices link mathemati-
cal, philosophical, and special thought, a well developed understanding of those
diagrams is strongly desirable; in particular, users should be able to recognize
whether a labelled line diagram represents a given concept lattice or not. This
paper offers a mathematical analysis of labelled line diagrams to support the
desired ability of understanding those diagrams. For that, Section 2 recalls some
basics of finite concept lattices and gives a proper proof for the Basic Theorem
of Finite Concept Lattices, Section 3 introduces a mathematization of line dia-
grams of finite bounded ordered sets, and Section 4 formulates and proves the
Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices. In the
final section, the Basic Theorem on Finite Labelled Line Diagrams is applied to
support the conceptual training tool “CAPESSIMUS - A Game of Conceiving
Concepts”.

2 Basics of Finite Concept Lattices

Let us assume that the reader is familiar with the basic notions of Formal Con-
cept Analysis as they are defined in [GW99]. From lattice theory the reader
should particularly know that, in a finite lattice L, each element of L is the
supremum of ∨-irreducible elements and the infimum of ∧-irreducible elements
(see [DP02], p.55). In this paper, J(L) denotes the set of all ∨-irreducible el-
ements of L and M(L) denotes the set of all ∧-irreducible elements of L. In
a concept lattice B(K) of a finite context K := (G, M, I), each ∨-irreducible
concept is of the form γg := ({g}′′, {g}′) for some g ∈ G and each ∧-irreducible
concept is of the form μm := ({m}′, {m}′′) for some m ∈ M , i.e., γG contains
J(B(K)) and μM contains M(B(K)).

Now, we are prepared to formulate and to prove the finite case of the Basic
Theorem on Concept Lattices (Part II) (cf. [GW99]; p.20):

Basic Theorem on Finite Concept Lattices (Part II). A finite lattice L
is isomorphic to the concept lattice B(K) of a finite context K := (G, M, I) if
and only if there exist mappings γ̃ : G → L and μ̃ : M → L such that

1. γ̃G contains J(L),
2. μ̃M contains M(L),
3. gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M .

Proof: Let ξ be an isomorphism from B(K) onto L. If, for some (A, B) ∈ B(K),∨
{γg | g ∈ A} is a ∨-irreducible element of B(K), there must exist an object

h ∈ A with γh =
∨

{γg | g ∈ A}. Since in a finite lattice every element is the
supremum of ∨-irreducible elements, it follows that J(B(K)) ⊆ γG and hence
J(L) = ξJ(B(K)) ⊆ ξγG. Dually, we obtain M(L) ⊆ ξμM . For g ∈ G and m ∈
M we have the following equivalences: gIm ⇐⇒ γg ≤ μm ⇐⇒ ξγg ≤ ξμm.
Thus, defining γ̃ := ξγ and μ̃ := ξμ yields the conditions 1, 2, and 3.
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Conversely, let γ̃ : G → L and μ̃ : M → L be mappings satisfying the
conditions 1, 2, and 3. For every (A, B) ∈ B(K) we have

∨
γ̃A ≤

∧
μ̃B by

condition 3. For each x ∈ J(L) with x ≤
∧

μ̃B there exists a g ∈ G with x = γ̃g
by condition 1; it follows that g ∈ B′ = A and that

∨
(γ̃A ∩ J(L)) =

∧
μ̃B.

Dually, for each y ∈ M(L) with y ≥
∨

γ̃A there exists an m ∈ M with y = μ̃m
by condition 2; it follows that m ∈ A′ = B and that

∧
(μ̃B ∩ M(L)) =

∨
γ̃A.

Both cases together yield
∨

γ̃A =
∨

(γ̃A ∩ J(L)) =
∧

(μ̃B ∩ M(L)) =
∧

μ̃B.
Now, we define ξ : B(K) → L by

ξ(A, B) :=
∨

γ̃A
(

=
∧

μ̃B
)
.

Evidently, the mapping ξ is order-preserving. Now, let (A, B), (C, D) ∈ B(K)
with (A, B) �≤ (C, D). Then there exists g ∈ A and m ∈ D with (g, m) �∈ I which
yields γ̃g �≤ μ̃m by condition 3. Thus, ξ(A, B) =

∨
γ̃A �≤

∧
μ̃D = ξ(C, D). This

proves that ξ is injective. Since
∨

(z] ∩ J(L) = z =
∧

[z) ∩ M(L) for z ∈ L (see
[DP02], p.55), there exists, by conditions 1 and 2, Az ⊆ G and Bz ⊆ M with
γ̃Az ⊆ J(L), μ̃Bz ⊆ M(L) and

∨
γ̃Az = z =

∧
μ̃Bz ; hence ξ(A′′

z , B′′
z ) = z, i.e.,

ξ is also surjective and therefore an isomorphism from B(K) onto L.

3 Line Diagrams of Finite Bounded Ordered Sets

Let us recall that an ordered set is a pair (O, ≤) consisting of a set O and a
binary relation ≤ which is reflexive, antisymmetric, and transitive. An ordered
set (O, ≤) is said to be bounded if there exist elements 0 and 1 in O such that
0 ≤ x ≤ 1 for all x ∈ O. In the following we consider only finite bounded ordered
sets.

Mathematically, a line diagram of a finite bounded ordered set O := (O, ≤)
can be defined as a quadruple Dη(O) := (CO , SO, TO, η) formed by

– a set CO of disjoint little circles of the same radius in the Euclidean plane
R

2,
– a set SO of straight line segments in R

2 having at most one point in common,
– a ternary relation TO ⊆ CO × SO × CO which contains for each s ∈ SO

exactly one triple (c1, s, c2) indicating that the line segment s links up the
circles c1 and c2 in R

2 and that c1 <2 c2 (i.e. for all points pi ∈ ci with
i = 1, 2, the second coordinate of p1 is smaller than the second coordinate
of p2).

– a bijection η : O → CO which makes explicit that the covering pairs o1 ≺ o2

in O are in one-to-one correspondence to the triples (η(o1), s, η(o2)) of TO

(consequently, |≺ | = |TO|).

The line diagrams Dη(O) and Dη̂(Ô) of finite bounded ordered sets O := (O, ≤)
and Ô := (Ô, ≤) are called isomorphic if and only if there exist bijections ζ :
CO → CÔ and σ : SO → SÔ such that (c1, s, c2) ∈ TO ⇐⇒ (ζ(c1), σ(s), ζ(c2)) ∈
TÔ; the corresponding isomorphism is denoted by (ζ, σ).
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Lemma 1. Two finite bounded ordered sets are isomorphic if and only if they
have isomorphic line diagrams.

Proof: Let O := (O, ≤) and Ô := (Ô, ≤) be finite bounded ordered sets with
corresponding line diagrams Dη(O) and Dη̂(Ô), respectively. Let θ be an isomor-
phim from O onto Ô. Then ζ := η̂θ(η−1) is a bijection from CO onto CÔ. For each
s ∈ SO, there is a unique covering pair o1 ≺ o2 in O with (η(o1), s, η(o2)) ∈ TO

and with θ(o1) ≺ θ(o2) in Dη̂(Ô); furthermore, there is a unique ŝ ∈ SÔ with
(η̂θ(o1), ŝ, η̂θ(o2)) ∈ TÔ. This shows that there is a bijection σ : SO → SÔ,
defined by σ(s) := ŝ, such that (c1, s, c2) ∈ TO ⇐⇒ (ζ(c1), σ(s), ζ(c2)) ∈ TÔ.

Hence Dη(O) and Dη̂(Ô) are isomorphic.
Conversely, let Dη(O) and Dη̂(Ô) be line diagrams of finite bounded ordered

sets with bijections ζ : CO → CÔ and σ : SO → SÔ such that (c1, s, c2) ∈ TO

⇐⇒ (ζ(c1), σ(s), ζ(c2)) ∈ TÔ. Then a bijection θ : O → Ô can be defined by θ :=
(η̂−1)ζη. For each covering pair o1 ≺ o2 in O, there is a corresponding triple
(η(o1), s, η(o2)) in TO and hence a corresponding triple (ζη(o1), σ(s), ζη(o2)) in
TÔ such that (η̂−1)ζη(o1) ≺ (η̂−1)ζη(o2), i.e. θ(o1) ≺ θ(o2); concluding back-
wards yields that θ(o1) ≺ θ(o2) implies o1 ≺ o2. Since, in finite ordered sets, we
have o1 ≤ o2 ⇐⇒ o1 = o2 or o1 ≺ · · · ≺ o2, the bijection θ : O → Ô is an
isomorphism.

4 The Basic Theorem on Finite Labelled Line Diagrams

A cross table which represents a finite context K := (G, M, I) contains the object
names of the objects in G and the attribute names of the attributes in M . Since
those names are understood as proper names (german: Eigennamen), there is
a bijection ν mapping each object resp. attribute in G∪̇M to its proper name,
i.e., ν(G∪̇M) := {ν(x) | x ∈ G∪̇M} is the set of all proper names of the objects
and attributes in the context K. A line diagram Dη̄(B(K)) together with the
bijection ν is called a (νG, νM)-labelled line diagram denoted by D

ν
η̄(B(K)).

Analogously, for a finite bounded ordered set O and mappings γ̌ : G → O and
μ̌ : M → O, a line diagram Dη(O) together with the introduced naming bijection
ν on G∪̇M is called a (νG, νM)-labelled line diagram denoted by D

ν
η(O). In both

types of labelled line diagrams, the object names νg are attached from below
to the circle η̄(γg) resp. η(γ̌g) and the attribute names νm are attached from
above to the circle η̄(μm) resp. η(μ̌m). A (νG, νM)-labelled line diagram D

ν
η(O)

is said to be isomorphic to a (νG, νM)-labelled line diagram D
ν
η̄(B(K)) if there

exist an isomorphism (ζ, σ) from the line diagram Dη(O) onto the line diagram
Dη̄(B(K)) such that ζη(γ̌g) = η̄(γg) for all g ∈ G and ζη(μ̌m) = η̄(μm) for all
m ∈ M .

Lemma 2. A finite bounded ordered set O is isomorphic to a finite concept
lattice B(K) with K := (G, M, I) if and only if a corresponding (νG, νM)-
labelled line diagram D

ν
η(O) is isomorphic to a (νG, νM)-labelled line diagram

D
ν
η̄(B(K)).
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Proof: By Lemma 1, (ζ, σ) : Dη(O) → Dη̄(B(K)) is an isomorphism if and
only if (η̄−1)ζη : O → B(K) is an isomorphism. Additionally, (ζ, σ) : D

ν
η(O) →

D
ν
η̄(B(K)) is an isomorphism if and only if (η̄−1)ζη : O → B(K) is an isomor-

phism and ζη(γ̌ν−1(νg)) = η̄(γν−1(νg)) for all g ∈ G and ζη(μ̌ν−1(νm)) =
η̄(μν−1(νm)) for all m ∈ M .

Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices.
Let B(K) be the concept lattice of a finite context K := (G, M, I) and let O :=
(O, ≤) be a finite bounded ordered set with mappings γ̌ : G → O and μ̌ : M → O.
Then, a (νG, νM)-labelled line diagram D

ν
η(O) of the ordered set O is isomorphic

to a (νG, νM)-labelled line diagram D
ν
η̄(B(K)) of the concept lattice B(K) if and

only if, in D
ν
η(O),

1. each circle, having exactly one line segment downwards, is labelled
(from below) by at least one object name out of νG,

2. each circle, having exactly one line segment upwards, is labelled (from
above) by at least one attribute name out of νM ,

3. a circle labelled by an object name out of νG is linked up by an
ascending chain of line segments to a circle labelled by an attribute
name out of νM , or those labelled circles are identical, if and only
if the named object has the named attribute,

4. there exists an injection ζ : CB(K) → CO such that, for each circle c̄
in the diagram D

ν
η̄(B(K)), ζ(c̄) represents a minimal upper bound of

{γ̌g | g ∈ G with γg ≤ η̄−1c̄} which is also a maximal lower bound
of {μ̌m | m ∈ M with μm ≥ η̄−1c̄},

5. the number of all circles of D
ν
η(O) equals the number of all circles of

D
ν
η̄(B(K)),

6. the number of all line segments of D
ν
η(O) equals the number of all

line segments of D
ν
η̄(B(K)).

Proof: Let us first assume that O is a finite lattice L. Then, by the Basic
Theorem on Finite Concept Lattices, L is isomorphic to B(K) if and only if
there exist mappings γ̃ : G → L and μ̃ : M → L such that 1. γ̃G ⊇ J(L), 2.
μ̃M ⊇ M(L), and 3. gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M . Since, by
Lemma 2, these conditions 1, 2, 3 are equivalent to the conditions 1, 2, 3 of
the Theorem above, respectively, it follows from the Basic Theorem on Finite
Concept Lattices that L ∼= B(K) if and only if the conditions 1, 2, 3 of the
Theorem above are valid.

Now, let O be a finite bounded ordered set with a (νG, νM)-labelled line
diagram D

ν
η(O) satisfying the conditions 1 to 6 above. Condition 4 yields the

existence of an injection ζ : CB(K) → CO defined by ζ(c̄) := c where the circle c
represents a minimal upper bound of {γ̌g | g ∈ G with γg ≤ η̄−1c̄} which is also
a maximal lower bound of {μ̌m | m ∈ M with μm ≥ η̄−1c̄}. By condition 5, ζ is
even a bijection. Condition 6 yields the existence of a bijection σ : SB(K) → SO

such that (c̄1, s̄, c̄2) ∈ TB(K) ⇐⇒ (ζ(c̄1), σ(s̄), ζ(c̄2)) ∈ TO. By Lemma 1, O and
B(K) are isomorphic as ordered sets. Therefore O is a finite lattice for which the
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Fig. 1. A formal context, the labelled line diagram of its concept lattice, and a line
diagram with one circle and four line segments more

Fig. 2. A formal context, the labelled line diagram of its concept lattice, and a line
diagram with the same number of circles, but with one line segment less

isomorphism of D
ν
η(O) and D

ν
η̄(B(K)) has already been proven in the preceding

paragraph.
The conditions 5 and 6 are necessary for obtaining ζ and σ as bijections. That

can be demonstrated by the examples in Fig.1 and Fig.2. The bounded ordered
set on the right of Fig.1 satisfies the conditions 1 to 4, but not 5 and 6, and
the bounded ordered set on the right of Fig.2 satisfies the conditions 1 to 5, but
not 6.
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5 CAPESSIMUS - A Game of Conceiving Concepts

CAPESSIMUS has been developed as a game of conceiving concepts and con-
cept hierarchies. In particular, players of the game are supposed to learn and
to understand the reading and drawing of labelled line diagrams of finite con-
cept lattices. The basic task of the game is to complete incomplete labelled line
diagrams. For each single task, the player obtains as pre-information

– a data table representing a formal context,
– a labelled line diagram of the concept lattice of that context in which all

line segments are deleted except those line segments touching the lowest
circle or the highest circle, and

– the number of line segments needed to complete the line diagram.1

Fig.3 shows a simple example of such pre-information. Since the “Canadian
Tower” has the attribute “high”, a line segment should be drawn between the
circles labelled with “Canadian Tower” and labelled with “high”. Similarly, line

Fig. 3. Formal context about architectures and an incomplete line diagram of that
context, which has to be completed by 8 line segments

1 This number can, for instance, be obtained from the successor list in Burmeister’s
program ConImp [Bu00].
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Fig. 4. Labelled line diagram of the concept lattice of the context in Fig.3

segments should be drawn between the circles labelled with “Petrona Twin Tow-
ers” and “very high”, with “Golden-Gate-Bridge” and “very broad”, and with
“Pontchartrain-Bridge” and “broad”, respectively. Furthermore, the circle of the
“PetronaTwin Towers” should also be linked to the circle of the attribute “broad”,
and the circle of the “Golden-Gate-Bridge” should also be linked to the circle of the
attribute “high”. Since b:= ({Pontchartrain-Bridge,Golden-Gate-Bridge},{high,
broad}) is a formal concept of the given context, one has to add four line segments
between the circle representing b and the circle of the “Petrona Twin Towers”, the
“Golden-Gate-Bridge”, the attribute “high”, and the attribute “broad”, respec-
tively. In total, eight line segments have to be added to complete the incomplete
line diagram, which yields the diagram shown in Fig.4.

The question is, of course, whether the completed labelled line diagram repre-
sents the concept lattice of the given context or not. An answer can be given by
applying the Basic Theorem on Labelled Line Diagrams of Finite Concept Lat-
tices. This means that the conditions 1 to 6 have to be checked in the presented
(νG, νM)-labelled line diagram as representation of a finite bounded ordered set.
In the completed diagram, condition 1 is satisfied because each circle, having ex-
actly one line segment downwards, is labelled by an object name, and condition
2 is satisfied because each circle, having exactly one line segment upwards, is
labelled by an attribute name. Condition 3 can be easily checked by inspect-
ing each cell of the context where a (non-)cross means that the corresponding
object circle is (not) linked to the corresponding attribute circle. Condition 5
is always satisfied because the pre-information yield that the circles are in one-
to-one correspondence to the concepts of the concept lattice of the given context.
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Fig. 5. Formal context about the major and minor 3-harmonies in C-major diatonicism
and an incomplete labelled line diagram to be completed by 20 line segments

Condition 6 is valid if and only if the number of added line segments equals the
number listed in the pre-information; for the example above this number is 8.
Finally, we are able to check condition 4 because the one-to-one correspondence
of condition 5 can be viewed as the identity on the set of all circles of the
presented line diagram and the one-to-one correspondence of condition 6 can
be viewed as the identity on the set of all line segments of the presented line
diagram. This together with the pre-information yields that condition 4 is always
valid.

We can summerize that testing the correctness of a labelled line diagram in the
game CAPESSIMUS consists of checking the conditions 1, 2, 3 and the proposed
number of added line segments. First experiences with the game CAPESSIMUS
have shown that it is quite attractive and instructive to practice the game. To
taste this, the reader should try to work out the exercise in Fig.5 (the solution
can be found in [Wi05], p.11).
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F. Siebel (Hrsg.): Mathematik präsentieren, reflektieren, beurteilen. Verlag
Allgemeine Wissenschaft, Mühltal 2005, 3-19.



Bipartite Ferrers-Graphs and Planar Concept

Lattices
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Abstract. There exists a close relation between the Ferrers-dimension
of a context and the order dimension of the appropriate concept lattice
[4]. Based on this fact we will introduce Ferrers-Graphs on contexts and
show how they characterize planar concept lattices.

1 Introduction

In this work we will show how to decide whether a concept lattice is planar out
of their contexts. We will introduce Ferrers-graphs [6] for that purpose. They
are indicating which elements of the cross table are not in the same Ferrers-
relation [4]. In case of this graph being bipartite we introduce a left-relation on
the context based on its vertex classes. This relation will be used to define a
left-relation on the concept lattice [7]. Since this relation is a strict order, the
lattice is planar.

2 Preliminaries

All contexts considered in this work will be finite and reduced.

2.1 Ferrers-Graphs

In this part we want to remind some basics about Ferrers-relations and the
Ferrers-dimension. We will introduce the notion of Ferrers-graphs and state the
conjecture that will be proven in the course of that work.

Definition 1. [4] A Ferrers-relation F is a relation F ⊆ A×B with

a1Fb1 ∧ a2Fb2 =⇒ a1Fb2 ∨ a2Fb1.

The Ferrers-dimension fdim(K) of a context K = (G, M, I) is the smallest num-
ber of Ferrers-Relations Ft ⊆ G ×M, t ∈ T , whose intersection is equal to I,
i.e. I =

⋂
t∈T Ft.

In a cross table representing a context K = (G, M, I) we
notice that I is a Ferrers-relation if and only if the configu-
ration depicted on the right does not occur.

m1 m2

g1 ×
g2 ×

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 313–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The inverse F of a Ferrers-relation is again a Ferrers-relation. Hence this
Ferrers-dimension of a context K = (G, M, I) is the smallest number of Ferrers-
relations covering the empty cells of its cross table [4], i.e. I := (G ×M) \ I =⋃

t∈T Ft. The following theorem gives a connection to the order dimension of a
lattice.

Theorem 1. [4] Let K be a context. Then fdim(K) = dim(B(K)).

We know that a lattice is planar if and only if its order dimension is at most
2 (see Theorem 2). Hence the result already gives a nice characterization of
contexts possessing planar concept lattices. Unfortunately the calculation of the
Ferrers-dimension in general is NP-complete [4].

Now we will introduce our notion of a Ferrers-graph. Its nodes are the empty
cells of a context and its edges indicate which vertices can not belong to the
same Ferrers-relation F .

Definition 2. [6] Let R ⊆ A × B be a relation. We define the Ferrers-graph
Γ (R) as follows:

V (Γ (R)) := R E(Γ (R)) := {{(a1, b2), (a2, b1)} | (a1, b1), (a2, b2) ∈ R}.
Let χ(Γ (I)) is the chromatic number of Γ (I). There is a conjecture claiming
that

fdim(K) = r ⇐⇒ χ(Γ (I)) = r

We will show in this work that this assertion holds for r = 2. It is easy to see
that the first statement implies the second:

Lemma 1. [5] For a context K = (G, M, I) the following implication holds:

fdim(K) = 2 =⇒ Γ (I) is bipartite.

Proof. Since fdim(K) = 2 there exist two Ferrers-relations F1 and F2 with
F1 ∪ F2 = I = V (Γ (I)). Let (g1, m1) and (g2, m2) be elements of F1. By
Definition 1 we notice g1 �I� m2 or g2 �I� m1, i.e. {(g1, m1), (g2, m2)} /∈ E(Γ (I)).
Analogously we conclude that there exist no edges between elements of F2. Hence
Γ (I) is bipartite with the vertex classes F1 and F2 \ F1.

�

2.2 Conjugate Orders

Conjugate orders are a powerful tool to characterize planar lattices and ordered
sets. Here we need that notion for introducing left-relations which are more
convenient for our purpose.

Definition 3. [3] Let P = (P,≤) be an ordered set. The incomparability relation
in P is denoted by ‖.
1. We call Lc conjugate relation if Lc ∪ Lc

−1 = ‖.
2. We call Lc conjugate order if additionally Lc is a strict order.
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With the help of conjugate orders we can characterize planar lattices since we
have:

Theorem 2. [1,2,3] Let K be a context. Then the following are equivalent:

1. B(K) is planar.
2. There exists a conjugate order on B(K).
3. dim(B(K)) ≤ 2.

2.3 Left-Relations

This section will remind some properties of left-relations. They are closely re-
lated to conjugate orders in case they are (strict) orders. Since a left-relation is
determined by a much smaller sorting relation acting only on some attributes
instead of all lattice elements, it is of better use for our issue.

A sorting relation on a lattice is just the union of strict linear orders on
incomparable

∧
-irreducibles sharing a common upper neighbour:

Definition 4. [7] Let V be a finite lattice and M be the set of its
∧

-irreducible
elements. A strict order La⊆ M ×M is called sorting relation if the following
condition1 holds for all elements m, n ∈M :

m∗ = n∗ ⇐⇒ m La n or n La m.

Based on the last definition we introduce left-relations on lattices. They extend
a sorting relation to lattice elements below the appropriate

∧
-irreducibles .

Definition 5. [7] Let V be a finite lattice with a given sorting relation La. For
arbitrary lattice elements v and w, we define

M(v, w) = {(v′, w′) ⊆M ×M | v ≤ v′, w ≤ w′, v ‖ w′, w ‖ v′}.
We define the relation L ⊆ V×V according to:

v L w :⇐⇒
{

v La w, v, w ∈M, v∗ = w∗

∃(m, n) ∈M(v, w) : m L n, else

L is called left-relation and R := L−1 is called right-relation on the lattice V.

Proposition 1. [7] Let L be a relation on a finite lattice V. Then the below-
mentioned statements are equivalent:

1. L is a conjugate order.
2. L is a left-relation and a strict order.

Finally we want to remind the first planartiy condition. It is a necessary and suf-
ficient condition for a lattice to be planar. It acts on incomparable

∧
-irreducibles

only and will be needed later in the proof. An illustration is given in Figure 1.
1 With m∗ we denote the unique upperneighbour of an

�
-irreducible m.
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Definition 6. [8] A conjugate relation R on a lattice V fulfills the first planarity
condition (FPC) if

mi R mk R mj =⇒ mk > (mi ∧mj)

holds for all
∧

-irreducibles mi, mk, mj ∈M .

0V

mi ∧mj

mi

mj

mk

0V

mi ∧mj

mj

mi

mk

Fig. 1. When considering a diagram of a lattice, the necessity of the FPC is obvious
for its planarity: If mi L mk L mj or mj L mk L mi holds then also mk > (mi ∧mj).
Otherwise every chain of diagram edges from mk to the bottom element of the lattice
intersects with a chain of edges from either mi or mj to mi ∧mj (see [7] and [8]).

Proposition 2. [8] Let L be a left-relation on a lattice V, then the following
equivalence holds:

L satisfies the FPC ⇐⇒ L is a conjugate order.

3 Left-Relations on Contexts

Now we want to give a connection between the vertex classes F1 and F2 of the
bipartite Ferrers-graph of a context K and a left relation on the concept lattice
B(K). This is done by simply reinterpreting the vertices of the graph. Instead
of “(g, m) is in vertex class F1” we read “g is left of m”, respectively for F2

and right. In this way we define a left-relation L on the context K which can be
extended to a left-relation L̂ on the concept lattice B(K).

Definition 7. Let K = (G, M, I) be a context.

1. An object g ∈ G and an attribute m ∈ M are incomparable (denoted by
g ‖K m), if the respective concepts are, i.e. if the inequality γg ‖ μm holds.

2. The relation ‖K ⊆ G×M is called incomparability relation in K.
3. A relation L ⊆ ‖K is called left-relation on K.
4. We denote R := ‖K \ L.

Two relations L, R ⊆ I on a context K = (G, M, I) induce a relation L̃ on M×M
by

m L̃ n :⇐⇒ μm ‖ μn and (∃g ∈ G : gIm, g L n or g R m, gIn).

Let Γ (I) be the bipartite Ferrers-graph of a context K = (G, M, I). Let the vertex
classes be denoted by L and R. Then L \ {(g, m) | γg > μm} is a left-relation
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on K and L ∪ R = I. If Γ (I) consists of components Γj(I), j ∈ J we partition
the vertex classes L and R by Lj := L ∩ V (Γj(I)) and Rj := R ∩ V (Γj(I)). We
introduce induced relations L̃j , j ∈ J by

m L̃j n ⇐⇒ μm ‖ μn and (∃g ∈ G : gIm, g Lj n or g Rj m, gIn).

We observe that for a bipartite graph Γ (I) and attribute concepts μm ‖ μn the
following equivalence holds:

∃g ∈ G : gIm, g Lj n ⇐⇒ ∃h ∈ G : h Rj m, hIn.

The induced relation L̃ is the key to our proof. We show in Lemma 2 that L̃
“almost” contains a sorting relation La. In Lemma 3 we prove that L̃ can be
extended to a conjugate order (implying that B(K) planar) if it is transitive.

Lemma 2. Let K = (G, M, I) be a reduced context and its Ferrers-graph Γ (I)
be bipartite with vertex classes L and R. Let L̃ be the relation induced by L.
Then L̃ is asymmetric and connex on pairs of incomparable attributes.

Proof.

1. Let m and n be attributes fulfilling m L̃ n and n L̃ m. In a respective cross
table one of the cases depicted on the right occurs. The left contradicts the
fact that L is a vertex class of Γ (I). The right one
does as well since there exists an object g ∈ G with
γg ‖ μm and gIn (by definition of L̃ we know μm ‖ μn),
both g L m and g R m are contradictions.

m n
× L

L ×

m n
× L

× R

2. Connexity is obvious: Since μm ‖ μn we find an object g with gIm and
g �I� n, i.e. (g, n) ∈ L ∪ R. �

Lemma 3. Let K = (G, M, I) be a reduced context and its Ferrers-graph Γ (I)
be bipartite with vertex classes L and R. Let L̃ be the relation induced by L.
Then the following implication holds:

L̃ is transitive =⇒ B(K) is planar.

Proof. By Lemma 2 we know that L̃ is asymmetric and connex on incomparable
pairs of attributes. Since L̃ is also transitive we conclude that L̃ is a strict order
on attribute sets whose concepts possess the same upper neighbour. Hence there
exists a sorting relation La ⊆ L̃. Let L be the (unique) left-relation induced by
La.

1. We show L̃ ⊆ L. Let m1 L̃ n1. According to Definition 5 we have to show
that there exists a pair of attributes (m2, n2) ∈M(m1, n1) with m2 L̃ n2.
Since m1 L̃ n1 there exists an object g fulfilling
gIm1 and g L̃n1. From m1≤m2 we conclude gIm2.
Consider an object h with hIn1 and h �I� m2 (which
exists because μn1 ‖ μm2). Then hIn2 and since
Γ (I) is bipartite we conclude h R m2, i.e. m2 L̃ n2.

m1 n1 m2 n2

g × L ×
h × R ×
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2. We show that L is a strict order. We know with Lemma 2 and 1. that
m1 L m2 ⇐⇒ m1 L̃ m2. By applying the FPC we need to prove only

m1 L̃ m2 L̃ m3 =⇒ μm2 > (μm1 ∧ μm3)

Let m1 L̃ m2 L̃ m3. Hence there exist objects g1 and g2 fulfilling g1Im2,
g2Im2, g1 R m1 and g2 L m3. Let g3 be an object possessing m1 and m3.
(If such an object does not exist, the infimum of m1 and m3 is the bottom
element of B(K) and μm2 trivially greater.)
Now γg3 > μm2 contradicts our assertion μm1 ‖ μm2

and both g3 L m2 and g3 R m2 contradict the fact
that L and R are vertex classes of the bipartite Graph
Γ (I). We conclude g3Im2, i.e. μm2 > μm1 ∧ μm3.

m1 m2 m3

g1 R ×
g2 × L

g3 × ? ×
By the use of L we constructed a left-relation L which is a strict order. With
Propostion 1 and Theorem 2 we conclude that B(K) is planar. �

With the previous Lemmas 2 and 3 we notice that we are “nearly finished”:
From the vertex classes L and R of Γ (I) we constructed via the relation L̃ a left-
relation L which is a strict order meaning that the concept lattice B(K) is planar.
The only requirement we had to meet was the transitivity of L̃. Unfortunately
it is not possible to prove this assertion as straightforward as the others.

Let us consider the example in Figure 2. On the left you can see the context
for the lattice M3. We notice that its Ferrers-graph (depicted in the middle) is
bipartite and consists of three components. However, the induced relation L̃ is
not transitive. However, we can “flip” for instance the component in the middle
to make L̃ transitive. This will be our strategy in the remaining of the proof:

If L̃ is not transitive, Γ (I) consists of at least three components which can be
“turned around smartly”. This will keep Γ (I) bipartite and the induced relation
becomes transitive.

m1 m2 m3

g1 × L R

g2 R × L

g3 L R × (g2,m1)

(g1,m3)

(g3,m2)

(g1,m2)

(g3,m1)

(g2,m3)

m1 L̃ m2

m3 L̃ m1

m2 L̃ m3

Fig. 2. A construction of a bipartite graph Γ (I) with vertex classes L on the left and
R on the right from a context K. The induced relation L̃ is not transitive.

In the next section we will therefore observe how the components of Γ (I) look
like. In particular, we are interested which attributes are connected, i.e. we want
to know, whether there is an edge sequence (g1, m1)E . . .E(g2, m2) in Γ (I) for
two attributes with incomparable concepts μm1 ‖ μm2 and appropriate objects
g1 and g2.
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4 The Components of Ferrers-Graphs

The next result gives a nice view on isolated vertices in Γ (I). Additionally it
explains the little ambiguity of the last section. There we used the symbols L
and R both for the left-relation on a context and the vertex classes of Γ (I). A
pair (g, m) with γg > μm is included in I , but not in ‖K. The following lemma
is stating that these are just the isolated vertices in V (Γ (I)), therefore we do
not have to regard them in our subsequent considerations.

Proposition 3. Let K = (G, M, I) be a reduced context and Γ (I) its Ferrers-
graph. A vertex (g, m) is isolated if and only if γg > μm.

Proof. ⇐ : Let γg > μm. Let h ∈ G be an object and n ∈ M be an attribute
s.t. hIm and gIn. We notice γh ≤ μm < γg ≤ μn, i.e. hIn. Hence, there is no
edge between (g, m) and (h, n).
⇒ : Since (g, m) ∈ V (Γ ) we know g �I� m.

1. If there is no object h ∈ G with hIm then we conclude μm = 0V and
γg > μm.

2. If there is no attribute n ∈ M with gIn then we conclude γg = 1V and
γg > μm.

3. Otherwise the sets g′ and m′ are non-
empty. All objects h ∈ m′ and all at-
tributes n ∈ g′ meet the condition hIn,
i.e. γh ≤ μn since there is no edge be-
tween (g, m) and (h, n) in Γ (I). We con-
clude g′′ ⊇ m′ � {g}, i.e. μm < γg.

g′′

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
m′

g′
m ︷ ︸︸ ︷

g × . . . ×
⎧
⎨

⎩

×
...
×

× . . . ×
...

...
× . . . ×

�
Now we want to observe which vertices of Γ (I) are in the same component for
a given context K n. It turns out that sequences of objects and attributes of the
form

h1In1I
−1h2In2I

−1 . . . I−1nr

play an important role for connectivity.

Definition 8. Let K = (G, M, I) be a context and [v, v] be an interval in B(K).
A sequence p = n0, h1, n1, h2, . . . , nr−1, hr, nr of objects hi and attributes ni is
called connection of n0 and nr w.r.t. [v, v] if

n0 /∈ Int(v) ∧ ∀ i ∈ {1, . . . r} : hiIni, hiIni−1, ni /∈ Int(v), hi /∈ Ext(v)

If additionally the condition hiInj =⇒ j ∈ {i, i− 1} holds for all i ∈ {1, . . . , r}
then p is called shortest connection.

It is obvious that every connection p between n0 and nr contains a shortest
connection q. We can construct q in the following way: Start with q := n0. If ni

is the last element of q, search for the highest index t with htIni and add ht to
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q. If hi is the last element of q, search for the highest index t with hiInt and
add nt to q. Stop after adding nr.

A shortest connection between n0 and nr is
represented by a subcontext as depicted on the
right. The main diagonal and the secondary di-
agonal above are filled with crosses, all other cells
are empty. It is easy to prove that every two of
these empty cells are in the same component of
Γ (I) since a vertex (hi, nj) ∈ V (Γ (I)) with i < j
has the neighbours

N(hi, nj) = {(hj , ni−1), (hj , ni), (hj+1, ni−1), (hj+1, ni)} ∩ V (Γ (I))

n0 n1 . . . nr

h1 × × • . . . • •
h2 ◦ × × • •
...

. . .
...

hr−1 ◦ ◦ × •
hr ◦ ◦ × ×

In particular, if n0 L̃ nr then we conclude

⎧
⎨

⎩

hi R nj , j < i,
hiInj , j ∈ {i, i + 1},
hi L nj , j > i + 1.

Definition 9. Let K = (G, M, I) be a context and [v, v] be an interval in B(K).

1. An attribute m with μm ∈ [v, v] is called bound if there exists an attribute
n with μn /∈ [v, v] and a connection p = m, . . . , n in [v, v].

2. Two attributes m, n with μm, μn ∈ [v, v] are called connected if there exists
a connection p = m, . . . , n in [v, v].

3. We call the attributes m1, m2, m3 (with pairwise incomparable concepts) free
triple if none of them is bound and no two of them are connected in the
interval [μm1 ∧ μm2 ∧ μm3, μm1 ∨ μm2 ∨ μm3].

In Figure 3 one can see how to imagine bounded and connected elements w.r.t.
an interval [v, v] and free triples in a diagram of a concept lattice.

v

v

μm

μn

v

v

μm
μn

v

v

μm1 μm2 μm3

Fig. 3. Examples for Definition 9. In the left picture m is bound since there is a
connection to an attribute n which is not in [v, v]. In the middle m and n are connected.
On the right the three attributes m1,m2 and m3 are a free triple. There are no edges
between the three branches containing the appropriate attributs concepts.
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Definition 10. Let K = (G, M, I) be a context and [v, v] be an interval in B(K).
Let U(v, v) denote the set of attributes which are not bound in [v, v]. Let m ∈
U(v, v). Then we call the set

Um[v, v] := {n ∈M | m and n are connected}
the m-component of [v, v].

Obviously “connected” is an equivalence relation. Therefore the set of equiva-
lence classes {Um}m∈M is a partition of U .

Definition 11. Let K = (G, M, I) be a context and Γ (I) its Ferrers-graph. Let
m1 and m2 be incomparable attributes. The m1, m2-component of Γ (I) denoted
by Γ (I)m1,m2 is that component of Γ (I) containing all edges between m1 and
m2, i.e. all edges of the form {(g2, m1), (g1, m2)}.
Remark 1. 1. Definition 11 is well defined since every two edges between m1

and m2 are in the same component of Γ (I). Let (g1, m2)E(g2, m1) and
(g3, m2)E(g4, m1) then g2Im2 und g3Im1, i.e. both edges are connected in
Γ (I) via the edge {(g2, m1)(g3, m2)}.

2. We remind a basic result of lattice theory: Let B(K) be a concept lattice and
v ‖ w ∈ B(K) then

∃g ∈ Ext(v) : γg ‖ w and ∃m ∈ Int(v) : μm ‖ w

3. Let (m1, m2, m3) be a free triple then there exist objects g1, g2, g3 ∈ G with
giImj ⇐⇒ i = j; from gImi, gImj we conclude gImk, otherwise mi and
mj would be connected.

4. Is there an object g mit gIm1, gIm2 and g �I� m3 then
we conclude Γm1,m3 = Γm2,m3 since we find objects
g1 and g2 with g1, g2 ∈ m′

3 and g1 /∈ m′
1, g2 /∈ m′

2,
i.e. a sequence of edges (g1, m1)E(g, m3)E(g2, m2)
in Γ (I). In particular, m1 L̃13 m3 ⇐⇒ m2 L̃13 m3.

m1 m2 m3

g × × •
g1 ◦ ×
g2 ◦ ×

With the tools provided so far we can now treat the problem of transitivity. The
next two lemmas claim that, for three attributes m1, m2 and m3, the condition
m1 L̃ m2 L̃ m3 implies m1 L̃ m3 if one of the attributes is bound or if two are
connected. That means that only the free triples remain as ”problematic cases”.

Lemma 4. Let K = (G, M, I) be a context and Γ (I) its bipartite Ferrers-graph.
Let m1, m2, m3 ∈ M be pairwise incomparable attributes, s.t. m1 and m2 are
connected w.r.t. [v, v] := [μm1 ∧ μm2 ∧ μm3, μm1 ∨ μm2 ∨ μm3]. Let L̃ij be
induced by Γ (I)mi,mj (i �= j ∈ {1, 2, 3}).
1. If m1, m3 and m2, m3 are not connected in that interval then L̃13=L̃23 and

m1 L̃13 m3 ⇐⇒ m2 L̃13 m3

2. Otherwise one of the following cases occurs: m1 L̃12 m2 =⇒ m1 L̃12 m3 or
m1 L̃12 m2 =⇒ m3 L̃12 m2 or m1 L̃13 m3 ⇐⇒ m2 L̃13 m3.

Both cases imply: m1 L̃12 m2, m2 L̃23 m3 =⇒ m1 L̃ij m3, L̃ij∈ {L̃12, L̃23}.
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Proof. Let p = n0, h1, . . . , hr, nr be a shortest connection between n0 := m1 and
nr := m2. Let g3 be an object possessing m3 and not both m1 and m2.

1. Since m1, m3 and m2, m3 are not con-
nected, we know that the conditions
hs �I� m3 and g3 �I� ns hold for all
s ∈ {0, . . . , r}. Then the following edge
sequence is in Γ (I)m1,m3 .

(g3, n0)E(h1, m3)E(g3, n1)E . . .

E(hr, m3)E(g3, nr).

We conclude m1 L̃13 m3 ⇐⇒ m2 L̃13 m3 and L̃13=L̃23. Therefore we have
m1 L̃12 m2, m2 L̃23 m3 =⇒ m1 L̃23 m3.

n0 n1 . . . nr m3

h1 × × •
h2 × × •
...

. . .
...

hr × × •
g3 ◦ ◦ ◦ . . . ◦ ◦ ×

2. Let p = m1, . . . , m2 be a connection as considered in 1. then we conclude in
analogy m1 L̃13 m3 ⇐⇒ m2 L̃13 m3.

Let hsIm3, s < r. Then m1 L̃12 m2 =⇒ hs L12 mj =⇒ m3 L̃12 m2.
Let hrIm3. Then m1 L̃12 m2 =⇒ hr R12 m1 =⇒ m1 L̃12 m3.

Let g3Ins, s < r − 1. Then m1 L̃12 m2 =⇒ hr R12 ns =⇒ g3 L12 m2 =⇒
m3 L̃12 m2.
Let g3Ins, s > 1. Then m1 L̃12 m2 =⇒ h1 L12 ns =⇒ g3 R12 mi =⇒
m1 L̃12 m3.
Let g3Ins and r − 1 ≤ s ≤ 1. We have either r = 1, i.e. h1Im2 and hence
m1 L̃13 m3 ⇐⇒ m2 L̃13 m3 (see Remark 1 4.) or r = 2 and s = 1.

Since n1 is part of the connection p and therefore μn1 �≥ v we conclude
either μn1 ‖ μm3 (in this case we find another object g̃3 possessing m3 but
not n1 and can reduce this case to one of the above-stated) or μn1 ≥ μm3

and w.l.o.g. μn1 ‖ μm1 (we find then objects g̃3 possessing m1 and not n1

and ĝ3 possessing n1 and m3, but not m1 implying m1 L̃12 m2 =⇒ h2 R12

m1 =⇒ g̃3 L12 n1 =⇒ ĝ3 R12 m1 =⇒ m1 L̃12 m3).
�

Lemma 5. Let K = (G, M, I) be a context and Γ (I) its bipartite Ferrers-graph.
Let m1, m2, m3 ∈ M be pairwise incomparable attributes, s.t. m1 is bound and
m1, m2 and m1, m3 are not connected in [v, v] := [μm1∧μm2∧μm3, μm1∨μm2∨
μm3]. Let L̃12 be induced by Γ (I)m1,m2 . Then m1 L̃12 m2 ⇐⇒ m1 L̃12 m3

Proof. Let p = h1, n1 . . . nr−1, hr be a shortest connection between n0 := m1

and nr with μnr /∈ [v, v]. Let t be the biggest index with μnt ∈ [v, v]. We show
first that nt L̃ m2 ⇐⇒ nt L̃ m3.

1. According to Definition 8 we know ht+1Int and ht+1Int+1.
2. Since m1, m2 and m1, m3 are not connected we conclude ht+1 �I� m2 and

ht+1 �I� m3.
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3. Since m1 is incomparable to m2 and m3, we find objects g2 and g3 meeting
the conditions g2Im2, g3Im3 and g2, g3 �I� m1. Since m1, m2 and m1, m3 are
not connected we notice g2, g3 �I� nt, nt+1.
(a) nt+1 /∈ Int(v):

4. We find an object h ∈ Ext(v) not inciding with nt+1 since nt+1 /∈
Int(v).

Therefore the following edge sequence is in Γ (I) (see Figure 4):

(g1, nt)E(ht+1, m1)E(h, nt+1)E(ht+1, m3)E(g3, nt).

Since Γ (I) is bipartite we conclude nt L̃ m2 ⇐⇒ nt L̃ m3.

nt m2 m3 nt+1

ht+1 ×1 •2 •2 ×1

g2 ◦3 ×3

g3 ◦3 ×3

h ×4 ×4 ×4 ◦4

γh

v

v

μnt
μm2 μm3

γht+1

γg2 γg3

μnt+1

Fig. 4. An illustration for the proof above. The filled dots • symbolize L and the circles
◦ symbolize R. The indices specify which part of the proof determines the appropriate
symbol.

(b) nt+1 ∈ Int(v): With Definition 9 we conclude μnt+1 ‖ v.
5. According to Remark 1 2. we find an attribute m̃ with m̃ ∈ Int(v)

and μm̃ ‖ μnt+1.
6. Finally there exists an object h with hInt+1 and h �I� m̃.

Therefore we find the following edge sequence in Γ (I) (see Figure 5):

(g2, nt)E(ht+1, m2)E(g2, nt+1)E(h, m̃)E(g3, nt+1)E(ht+1, m3)E(g3, nt).

Since Γ (I) is bipartite we conclude nt L̃ m2 ⇐⇒ nt L̃ m3.

Since nt and m1 are connected, we finally apply the first claim of Lemma 4 and
conclude

m1 L̃12 m2 ⇐⇒ nt L̃12 m2 ⇐⇒ nt L̃12 m3 ⇐⇒ m1 L̃12 m3. �

Corollary 1. Let K = (G, M, I) be a context and m1, m2, m3 ∈ M pairwise
incomparable attributes. If m1 L̃ m2 L̃ m3 L̃ m1 then (m1, m2, m3) is a free
triple.

Proof. : Let {i, j, k} = {1, 2, 3}.
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nt m2 m3 nt+1 m̃

ht+1 ×1 •2 •2 ×1

g2 ◦3 ×3 ◦3 ×5

g3 ◦3 ×3 ◦3 ×5

h ×6 •6

v

v

μm̃

μnt μmj μmk

γht+1

γgj γgk

μnt+1

γh

Fig. 5. An illustration for the proof above. The filled dots • symbolize L and the circles
◦ symbolize R. The indices specify which part of the proof determines the appropriate
symbol.

1. No two attributes mi, mj are connected since mi L̃ mj L̃ mk =⇒ mi L̃ mk

(see Lemma 4).
2. No attribute mi is bound since then mi L̃ mj L̃ mk =⇒ mi L̃ mk (see

Lemma 5).

By Definition 9 (m1, m2, m3) is then a free triple. �

In the remaining of this section we show that edges between elements of free
triples (together with appropriate objects) are in different components of Γ (I).
This means that the relations induced by the vertex classes of components of
Γ (I) are transitive, i.e. strict orders.

Lemma 6. Let K = (G, M, I) be a context. Then (m1, m2, m3) is a free triple
if and only if the components Γmi,mj (i �= j ∈ {1, 2, 3}) are pairwise disjoint.

Proof. ⇒: We suppose Γ (I)mi,mj = Γ (I)mi,mk
. W.l.o.g. we find an edge se-

quence

(gj , mi)E(gi, mj)E(h0, n0)E(h1, n1)E . . . E(hr, nr)E(gi, mk)E(gk, mi).

in Γ (I). Since no attribute is bound this provides a connection p = mj, h0, . . . , m
w.r.t. [μm1∧μm2∧μm3, μm1∨μm2∨μm3] where m ∈ {mi, mk}. This contradicts
our assertion that no two attributes are connected.
⇐: If (m1, m2, m3) is not a free triple then two attributes are connected or one
is bound. In both cases we find with Lemma 4 and Lemma 5 respectively that
not all components Γ (I)mi,mj are disjoint.

�

Proposition 4. Let K = (G, M, I) be a context and Γ (I) = �j∈JΓj(I) its
bipartite Ferrers-graph. Let L̃j be the relation induced by the vertex classes L

and R on the component Γj(I). Then L̃j is a strict order.
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Proof. The relation L̃j is asymmetric since L̃ is (see Lemma 2). Let m1, m2, m3

be attributes. We want to show m1 L̃j m2 L̃j m3 =⇒ m1 L̃j m3.

1. W.lo.g. let μm1 ≤ μm3. We find objects g1 with g1Im1, g1 L m2 and g2

with g2Im2, g2 L m3. This contradicts Γ (I) to be bipartite since g1Im3, i.e.
(g1, m2)E(g2, m3).

2. Since we have Γ (I)m1,m2 = Γ (I)m2,m3 we notice by applying Lemma 6 that
(m1, m2, m3) is not a free triple.

If m1, m2 or m2, m3 are connected then we find m1 L̃j m3 by applying
Lemma 4. If only m1, m3 are connected we find with the first statement of
Lemma 4 that m1 L̃j m2 ⇐⇒ m3 L̃j m2 contradicting our precondition.

If otherwise m1 or m3 is bound then we apply Lemma 5 and notice m1 L̃j m3.
If m2 is bound we conclude m1 L̃j m2 ⇐⇒ m3 L̃j m2 contradicting our
precondition. �

5 Bipartitions of Ferrers-Graphs and Their Induced
Left-Relations

In this section we want to show how the components ofΓ (I) can be “turned around”
s.t. the relation induced by the new vertex classes is transitive. At the beginning we
remind a basic result of graph theory, namely that “turning around” components
keeps a graph bipartite. See Figure 6 for an intuition of this fact.

Lemma 7. Let Γ = (V, E) be a bipartite graph with vertex classes X and Y
and Γj , j ∈ J its components. Let Xj = X ∩ V (Γj) and Yj = Y ∩ V (Γj) be
the vertex classes of the appropriate components Γj. Let Rj ∈ {Xj , Yj} for all
j ∈ J . Then the sets R =

⋃
j∈J Rj and V (Γ ) \R are a bipartition of Γ .

Proof. Let v ∈ Ra and w ∈ Rb. If a = b then there is no edge {v, w} ∈ E(Γ )
since v, w are both either in X or Y . If a �= b then there is no edge between them
since there is no edge between Γa and Γb.

Γ1

Γ2

Γ3

Γ4

Fig. 6. The bipartite graph Γ consists of four components. “Turning around” some of
them (here Γ2 and Γ4) supplies a new bipartition.
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Lemma 8. Let K = (G, M, I) be a context, Γ (I) its bipartite Ferrers-graph and
[v, v] an interval in B(K). Let m, n ∈ M and Um �= Un ⊆ U [v, v]. The edge set
E of Γ (I)m,n consists exactly of all edges of the form

{{(g, m1), (h, n1)} | m1 ∈ Um, n1 ∈ Un, {(g, m1), (h, n1)} ∈ E(Γ (I))}.
Moreover, let L̃j be induced by Γ (I)m,n then

m L̃j n =⇒ m1 L̃j n1 ∀m1 ∈ Um, n1 ∈ Un.

Proof. Let m1 ∈ Um, n1 ∈ Un and {(g, m1), (h, n1)} ∈ E(Γ (I)). Since there
exists a connection p = m1, h̃1, ñ1, . . . , h̃r, m we find an edge sequence

(g, m1)E(h̃1, n1)E(g, ñ1)E . . . E(h̃r, n1)E(g, m)

Since (g, m) ∈ V (Γ (I)m,n) we know {(g, m1), (h, n1)} ∈ E(Γ (I)m,n).
Let {(g1, m1), (h1, n1)} in E(Γ (I)m,n) then we find w.l.o.g an edge sequence

(g1, m1)E(h1, n1)E . . . E(g, m)E(h, n).

W.l.o.g. this results in connections p1 = m1, h1, . . . , m and p2 = n1, . . . , g, n, i.e.
m1 ∈ Um and n1 ∈ Un. In this case we find

m L̃j n =⇒ g Rj m =⇒ . . . =⇒ h1 Lj n1 =⇒ g1 Rj m1 =⇒ m1 L̃j zn1.
�

Lemma 9. Let K = (G, M, I) be a context and Γ (I) its bipartite Ferrers-graph.
Let Γj(I), j ∈ J be the components of Γ (I) and L̃j their respective induced
relations. There exists a relation L̂ =

⊎
j∈J L̂j with L̂j ∈ {L̃j , L̃

−1

j } that is
transitive.

Proof. For each interval [v, v] ⊆ B(K) we introduce a linear order on its compo-
nents:

Um1 ≤ Um2 ≤ . . . ≤ Umt .

Let Umi �=Umj ⊆U [v, v], the relation L̃ij be induced by Γ (I)mi,mj and mi L̃ij mj .
We define

L̂ij :=

{
L̃ij , i < j

L̃
−1

ij , i > j.

According to Lemma 8 this setting is unambiguous w.r.t. the components of the
interval [v, v]. We notice that L̃ij is uniquely determined since two attributes mi

and mj are in different components Um1 , Um2 ∈ [v, v] only if v = m1 ∧m2 and
v = m1 ∨m2. For all other relations L̃r induced by Γr(I) we set L̂r :=L̃r.

Let m1 L̂12 m2 L̂23 m3. Since Γ (I) is bipartite we know μm1 ‖ μm3. In
case of L̂13∈ {L̂12, L̂23} we conclude with Proposition 4 m1L̂13m3. Otherwise
(m1, m2, m3) is a free triple by Lemma 6. The components Um1 , Um2 and Um3

of U [v, v] are pairwise disjoint. By applying the construction above we conclude
Um1 ≤ Um2 ≤ Um3 and therefore Um1 ≤ Um3 . This is, m1L̂13m3. �
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At this point, we provided everything to show that the above-stated conjecture
is true.

Theorem 3. Let K = (G, M, I) be a context and Γ (I) its Ferrers-graph. Then
the following conditions are equivalent.

1. Γ (I) is bipartite
2. B(K) is planar.

Proof.
1. =⇒ 2.: Consider the relation L̂ from Lemma 9. Let L̂ :=

⋃
j∈J L̂j and

R̂ :=
⋃

j∈J R̂j with

L̂j :=

{
Lj , L̂j =L̃j

Rj, L̂j =L̃
−1

j .

L̂ and R̂ are a bipartition of Γ (I) since Lj= Vj(Γ (I)) ∩ L (see Lemma 7) and
L̂ is its induced relation. The relation L̂ is asymmetric and connex (Lemma 2)
and transitive (Lemma 9). Therefore B(K) is planar (Lemma 3).
2. =⇒ 1.: If B(K) is planar then its order dimension is at most two (Theorem
2). Therefore, the Ferrers-dimension is at most two (Theorem 1) and hence its
Ferrers-graph bipartite (Lemma 1).

�

6 Conclusion

We could show in this work that planar concept lattices can be characterized in a
simple way by their contexts. The complexity of an algorithm to decide whether
Γ (I) is bipartite, is O(E(Γ (I))) = O((|G| · |M |)2). We still do not know how to
develop an algorithm to find the conjugate order L̂ out of Γ (I).

It would be interesting to find estimations of the minimal number of edge
crossings in non-planar concept lattices depending on the shape of the Ferrers-
graph of the appropriate context.
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Meghini, Carlo 66
Mephu Nguifo, Engelbert 130

Napoli, Amedeo 51

Ojeda-Aciego, Manuel 197

Pal’chunov, Dmitry E. 221
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